what about goosebumps ?

porcupineThere’s one thing that porcupines will always do better than humans: having goosebumps. Ok, ok, we cannot raise our quills when threatened, simply because we do not have quills. But when we have goosebumps, our body hairs behave exactly in the same way as porcupine quills do. Cutis anserina, a definitely less catchy way to call it, consists in the formation of bumps on the skin. The curious thing is that this phenomenon is involuntary 🙂 let’s try to understand how this happens.

goosebumpsA feeling of cold, a sudden strong emotion of fear, pleasure, euphoria and, yes, also sexual arousal… Our body reacts to all these events in the simplest way possible: trying to protect itself. And we cannot control it, since it’s a reflex (click here to read about another reflex typical of human body). In a previous post we learnt an interesting thing about human body thermoregulation: homeostasic processes (that we saw also here) always try to keep our Body Temperature (BT) of 37°C despite environment conditions. When outside it’s too cold, our energy losses get more important and our BT lowers too fast. We know that, for example, if we do some physical exercise (even a short run) we’ll warm up again quite fast. This is because the activation of muscles develops that energy needed to warm up the body and restore proper BT conditions. But when a sudden feeling of cold occurs, our skin receptors immediately send this information to the brain via the sympathetic nervous system. Our brain cannot wait for us to take a decision and, as previously said, automatically activates a protective action: shivering.
By doing this, our muscles produce really fast contractions that we cannot control (don’t forget we’re always dealing with a reflex!).

arrector pili muscles

The twitching movements of muscles produce heat, which helps to raise BT. The contraction of the arrector pili muscles, that are the tiny muscles at the base of each hair, pulls the hair erect. In that moment our body acts like that of a porcupine, even if the latter experiences this reflex when threatened (by appearing larger, the animal intimidates enemies).

In exactly the same way, if our jaw muscles begin to shiver, we start chattering our teeth. The mechanism is always the same: BT lowering is detected and an automatic response is activated to raise it up again. In an extremely stressful situation, it is possible to have goosebumps also after experiencing the so-called fight or flight response, when (from this webpage) “the sympathetic nervous system floods the blood with adrenaline (epinephrine), a hormone that speeds up heart rate, metabolism, and body temperature in the presence of extreme stress”. But this is another story that we’ll see later. For tonight, don’t forget to feed your porcupine with a wonderful home-made soup (possibly warm)!

other sources: uno, due e tre

Advertisements

Robot = Doctor of the Future ?

robot_doctors_900

10,000 years ago, primitive doctors bored holes in the head to cure patients. Now the “brains” of a computer are saving lives and preventing disease. So what’s next?

Somebody linked me this nice infographic called “The Digitization of Health Care“. It presents a nice overview about how technology has deeply changed the world of medicine, and it brings some interesting information about Medical Robotics. Click on the links I added if you want to read my posts I wrote about these subjects 🙂

6 ways technology is improving healthcare 

• Internet can be a main source of medical information
• Healthcare facilities, particularly hospitals, are using social media to establish contact with patients
• Better treatment leads to less suffering
• Patient care is safer and more reliable
• Thanks to smartphones and tablets, doctors are easier to reach
• Search engines like Google have been able to accurately predict medical trends such as flu outbreaks

 

NOW: Artificial Intelligence in medicine

• Special software is available to examine the heart and prevent heart attacks before they occur
• Artificial muscles feature smart technology that allows them to function more like real muscles.
• Robotic surgery assistants can not only pass the correct tools to doctors, but also keep track of these tools and learn about a doctor’s preferences

 

source: this infographic (also click on the image)

(all rights belong to bestmedicaldegrees.com)

IEEE BioRob 2014 ( + mini news in italiano)

biorob145th edition of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2014), the biannual conference on theoretical and experimental issues in the fields of robotics and mechatronics applied to medicine and biology. This year the conference will be held in SĂŁo Paulo on August 12-15, 2014. The conference theme of this edition is “Biomedical Robotics and Biomechatronics Technology for a World without Borders“. The confluence of all stakeholders engineers, physicians, industry, government, patients, and caregivers will be unique but in line with United Nations 2012 unanimous decision to make healthcare and rehabilitation a human right.

BioRob covers both theoretical and experimental challenges posed by the application of robotics and mechatronics in medicine and biology. The primary focus of Biorobotics is to analyze biological systems from a “biomechatronic” point of view, trying to understand the scientific and engineering principles underlying their extraordinary performance. This profound understanding of how biological systems work, behave and interact can be used for two main objectives: to guide the design and fabrication of novel, high performance bio-inspired machines and systems for many different applications; and to develop novel nano, micro-, macro- devices that can act upon, substitute parts of, and assist human beings in prevention, diagnosis, surgery, prosthetics, rehabilitation and personal assistance. The technical program of IEEE BioRob2014 will consist of invited talks, special sessions, posters, and paper presentations. Papers can cover areas of Biorobotics and Biomechatronics including :

  • Technology for assisted surgery and diagnosis
  • Biomechatronic and human-centered design
  • Micro/nano technologies in medicine and biologylogo
  • Wearable assistive and augmenting devices
  • Biological systems modeling
  • Biologically-inspired systems
  • Rehabilitation and assistive robotics
  • Human-machine interaction
  • Neuro-robotics
  • Prosthetic devices
  • Locomotion and manipulation in robots and biological systems
  • Technology Assessment, Ethical and Social Implications of Biorobotics and Biomechatronics

Important dates :

  • February 28, 2014 – Submission of paper & workshop proposals
  • May 2, 2014 – Paper acceptance notification
  • May 26, 2014 – Final paper submission

***

TGR_liguriae per dare un’occhiata al mondo della robotica a Genova, clicca qui per vedere un breve servizio del TG Regione Liguria del 12 febbraio 2014 (dal minuto 16:40 in poi)

“robot aspirateur” ou “aspirateur Ă  roulette” ?

laumondEntretien avec Jean-Paul Laumond

(réalisé par Serge Abiteboul et Gilles Dowek)

partie 1partie 2

Jean-Paul Laumond est directeur de recherche au LAAS-CNRS à Toulouse. Il a occupĂ© une Chaire du Collège de France de 2011 Ă  2012, “Robotique : champs scientifiques et diffusions technologiques”. Il raconte son parcours et sa dĂ©couverte de la robotique. Il montre les liens et les tensions entre la dĂ©marche scientifique, oĂą la gĂ©nĂ©ralitĂ© des solutions prime, et la dĂ©marche technique, oĂą toutes les solutions sont bonnes. […] La robotique, territoire en pleine mutation, est aussi un lieu privilĂ©giĂ© pour interroger les liens de l’informatique avec les mathĂ©matiques, la physique et la mĂ©canique. La richesse de l’informatique, sa beautĂ©, est aussi dans dans la complexitĂ© de ces rapports avec les autres sciences.

[…] La robotique se dĂ©finit de manière synthĂ©tique comme l’Ă©tude des rapports que peut entretenir une machine avec le monde rĂ©el, une machine qui agit, et qui agit par le mouvement. Le mouvement est absolument central. Un robot est une machine qui bouge et qui est commandĂ©e par un ordinateur. Ce qui distingue le robot de l’automate, c’est qu’un robot n’est pas commandĂ© par des cames, aussi subtiles soient-elles. Il y a une transformation, un traitement de l’information, qui met en rapport l’espace sensoriel et l’espace moteur. La fonction sensorimotrice — la rĂ©troaction diraient les automaticiens — est fondamentale. Elle est d’ailleurs l’apanage du vivant : une laitue bouge et croĂ®t par photosynthèse ; un guĂ©pard repère sa proie et la poursuit en la maintenant dans son champ de vision. En robotique, cette boucle sensorimotrice est plus ou moins complexe : elle va de la simple fonction rĂ©flexe, oĂą un signal produit directement une commande, Ă  des architectures complexes, comme celles que j’Ă©voquais plus tĂ´t, qui incluent une modĂ©lisation et un raisonnement sur l’espace. Ce point de vue n’est bien sĂ»r pas nouveau. Il a dĂ©jĂ  Ă©tĂ© explorĂ©, par exemple, par PoincarĂ© qui Ă©tablit une forme de triangulation entre l’espace physique, l’espace sensoriel et l’espace moteur. Nous, ĂŞtres humains, n’avons accès qu’Ă  l’espace sensoriel et Ă  l’espace moteur. Avec ces deux espaces nous devons reconstruire le rĂ©el. La gĂ©omĂ©trie est l’outil privilĂ©giĂ© de cette construction. La question pour le roboticien est de conduire cette construction de manière effective, en utilisant un ordinateur. Ainsi posĂ©, on sent bien poindre une unitĂ©.

Pourquoi appelle-t-on un robot aspirateur “robot aspirateur” et non “aspirateur Ă  roulette” ?

roombaParce que le “robot aspirateur” a des capacitĂ©s d’autonomie. Il est capable de s’adapter Ă  des environnements pour lesquels il n’a pas Ă©tĂ© programmĂ© explicitement. Il y a de nombreuses choses qui bougent dans nos maisons, mais vous n’avez jamais vu une machine Ă  laver venir toute seule Ă  cotĂ© de vous dans le salon. Je dois ici prĂ©ciser la notion de mouvement. Il y a deux grands types de mouvements. D’un cotĂ© le mouvement d’une machine Ă  laver qui tourne autour d’un axe fixe, d’une plante qui ne peut pas se dĂ©placer, d’un robot-peintre sur une chaĂ®ne de montage automobile. Ces mouvements sont locaux, en quelque sorte, enracinĂ©s. Ils ne mettent en jeu que les variables internes du système. De l’autre, et c’est ce qui distingue l’animal du vĂ©gĂ©tal, il y a les mouvements de dĂ©placement : le guĂ©pard doit se dĂ©placer pour se nourrir. Ce n’est pas le cas de la laitue. Pour le moment les seules machines qui bougent automatiquement dans notre quotidien sont sur des rails, horizontaux, comme les trains, verticaux, comme les ascenseurs… Mais qu’un robot se dĂ©place, de manière autonome, c’est-Ă -dire sans que sa trajectoire ait Ă©tĂ© explicitement programmĂ©e, c’est nouveau. C’est en ce sens que les aspirateurs Ă  roulettes sont bien des robots.