Cariche inerti per resine

fonti: uno e due

Sono considerate cariche tutti i materiali inerti, generalmente polveri di varia origine (minerale, vegetale, metallica) e granulometria, che possono essere aggiunti alle resine per modificarne le caratteristiche come il peso, la resistenza meccanica, la lavorabilità, la densità, l’aspetto, la tixotropia e la consistenza in genere, senza però modificarne la reazione chimica.
L’aggiunta di cariche inerti nella resina comporta l’aumento del volume del composto (resina + carica), riducendo al contempo la percentuale di resina nella massa. Questo genera diversi vantaggi, come l’abbassamento del picco esotermico (massima temperatura raggiungibile durante il processo di polimerizzazione delle resine), l’aumento della stabilità dimensionale e il contenimento del costo totale.
Ogni tipo di carica ha in genere un diverso comportamento nei riguardi della resina in cui è stata additivata, e ciò determina le caratteristiche finali del composto. Le particelle delle diverse cariche infatti hanno strutture diverse tra di loro: possono essere sferiche, lamellari, poliedriche o amorfe, e ciò influisce sul rapporto tra incremento di volume e viscosità del composto. Di seguito alcuni esempi di cariche comunemente impiegate.

Polveri e graniglie minerali:

  • Expanglass (granuli di vetro soffiato):inerte leggero ed altamentemicrosfere-vetro-cave-s resistente a compressione. Non assorbe resina ed ha alte resistenze chimiche. Compatibile con tutti i tipi di resina.
  • Sabbie di quarzo: pure e selezionate da utilizzare con resine epossidiche, nella preparazione di malte ad alta resistenza per riparazioni di pavimenti industriali, sigillatura lesioni, rifacimento parti mancanti; edilizia, restauro.

Graniglie metalliche:

    • Graniglia di alluminio: carica per la costruzione di stampi in resina epossidica; agevola la dissipazione del calore.
    • Graniglie selezionate di rame, bronzo, ottone e zinco:conglomerati ad alto graniglie_metallichecontenuto di metallo, con legante poliestere per settoreartistico e oggettistica.
    • Grafite: in polvere finissima costituita da carbonio puro, utilizzata per disegnare su carta creazioni prospettiche,sfumature e per dare rilievo a luci e ombre. Se dispersa in un legante permette di ottenere colorigrafite-polvere-small per pittura. Utilizzata anche come carica inerte per resine da colata e resine da laminazione.

Graniglie vegetali:

  • Gusci di noce: macinati, vengono utilizzati nel settore restauro per sabbiature delicate su dipinti e opere in legno, o in impasti con resine per ottenere conglomerati (esempio: pasta legno lavorabile per restauro di opere lignee).
  • Polvere di legno: ottenuta dalla macinazione di fibre vegetali, è ideale per essere polvere-legno-smallutilizzata come carica inerte di riempimento per resine e colle nella produzione di composti da colata, stucchi e paste che una volta induriti, assumendo le caratteristiche tipiche del legno come il peso, la lavorabilità e l’aspetto, possano essere utilizzati per interventi riempitivi e di ricostruzione di supporti e manufatti in legno.
  • Polpa di cellulosa: è costituita da microfibre di pura cellulosa insolubili nella maggior parte dei solventi, ed è utilizzata come carica inerte per resine e nella preparazione di pappette o impacchi di pulitura per superfici lapidee ed affreschi, alle quali conferisce proprietà supportanti e assorbenti.polpa-cellulosa-small
Advertisements

Arriva Hunova, un robot per la riabilitazione

fonte: Ansa.it

section-3Le nuove tecnologie e l’industria 4.0 estendono le loro applicazioni nel settore sanitario con un robot per la riabilitazione di pazienti con disabilità in ambito neurologico e spinale. Il robot si chiama hunova, è nato con brevetti dell’Istituto Italiano di Tecnologia (IIT) ed è prodotto e commercializzato in tutto il mondo da Movendo Technology, la prima medical company made in Italy attiva nella robotica riabilitativa (50% Dompé, 43% i fondatori e inventori Simone Ungaro, Carlo Sanfilippo, Jody Saglia, 7% IIT).

hunova integra meccatronica, elettronica, sensoristica, e software: 4 motori, 2 sensori di forza/coppia, un sensore inerziale, più di 100 metri di cavi, un cervello elettronico, 1 interfaccia e 4 schede elettroniche di controllo. La sua intelligenza artificiale o centro di controllo combina big data, algoritmi avanzati di interazione uomo-macchina e rete di sensori, mantenendo un’estrema semplicità di utilizzo da parte dell’operatore come del paziente. I fattori che caratterizzano hunova sono la rilevazione e misurazione oggettiva dei parametri biomeccanici del paziente e l’elevato livello di assistenza e intervento robotico che facilita e guida chi è sottoposto alla riabilitazione, stimolandolo con protocolli somministrati in forma di gioco (videogame interattivi). Gli ambiti di applicazione terapeutica in campo neurologico riguardano gli esiti di ictus ischemico con o senza emiplegia, malattie neurodegenerative, morbo di Parkinson, Sclerosi Multipla, ma anche il campo ortopedico, quello geriatrico e della medicina dello sport.

Al momento sono operativi 28 robot di cui 2 negli Stati Uniti, 1 in Germania e Grecia. Il centro spinale dell’ospedale Niguarda di Milano diretto da Michele Spinelli e il Centro di Recupero e Riabilitazione Funzionale Villa Beretta (Lecco) diretta da Franco Molteni (Ospedale Valduce di Como) stanno implementando l’uso del robot.

Immagine-Configurazione-Monopodalica

Leachy ou Reachy ?

Dans le cadre d’un projet de recherche, Pollen Robotics et l’INCIA ont créé en 2017 Reachy, un bras robotique bio-inspiré reprenant la taille et les mobilité d’un bras adulte à 7 degrés de liberté. Reachy est destiné à être une plateforme de recherche et d’expérimentation permettant, par exemple, d’explorer de nouvelles interactions ou encore les problématiques liées à la commande dans des espaces de grandes dimensions. Open source, imprimé en 3D et modulaire, il est conçu pour pouvoir facilement s’adapter à différent setups expérimentaux !

reachyandleachyAujourd’hui Reachy est disponible dans une nouvelle version qui inclue:

  • une mécanique totalement revue permettant la réalisation de mouvements lisses et précis,
  • la cinématique inverse et directe,
  • la possibilité d’ajouter une main faite par OpenBionics,
  • une version bras gauche appelée Leachy

À ne pas rater le site web officiel de Pollen Robotics 🙂

pollen

2017 top 5 medical device companies

all rights belong to Monique Ellis (ProClinical.eu)

Medtronic – 2016 revenue: $29bn – The leading medical device company in the world, Medtronic, enjoyed a staggering 42% growth in revenue compared with 2015 figures ($20.3 billion). The medical device giant operates in over 140 countries and employs more than 100,000 people that work across its principal units: cardiovascular, diabetes, spinal and biologics, neuromodulation, surgery and cardiac rhythm disease. Much of 2016 growth can be attributed to the completion of a very successful acquisition of medtech company Covidien.

Johnson & Johnson – 2016 revenue: $25.1bn – The second biggest medical device company on the list is American biopharmaceutical, consumer goods and medical device giant Johnson & Johnson, which has been a well-known household name across the globe for several decades. Their ranking on this list is based on the revenue from the company’s medical device subsidiaries that include Ethicon, Acclarent and DePuy Synthes. The group develop and manufacture products in various therapy areas: orthopaedic, cardiovascular, diabetes, vision care and surgery. The company saw a 2.6% increase in revenue in 2016 and intends to drive further growth in 2017 through greater innovation, portfolio management and by expanding into emerging markets.

GE Healthcare – 2016 revenue: $18.2bn – In the top three medical device companies in the world, General Electric is another multinational conglomerate that has a thriving healthcare segment, commonly known as GE Healthcare. The company produces medical devices like x-rays, ultrasound machines, incubators and CT image machines. It also develops devices that aid research and drug innovation and biopharmaceutical manufacturing. In 2016, the company experienced healthy 17.3% margin and in 2017, it aims to grow by expanding further into emerging markets and China. Recently, GE Healthcare has committed $300million under their initiative, Sustainable Healthcare Solutions, which aims to bring ‘disruptive technologies’ to these emerging markets where healthcare is less accessible.

Fresenius (Medical Care) – 2016 revenue: $18bn – German medical devices company Fresenius Medical Care specialises predominately in developing medical supplies to treat patients with renal (kidney) diseases, particularly to aid dialysis. The company attributes strong growth of 7% in 2016 to an increase in sales of dialysers and machines as well as positive price and volume effects. It also grew its workforce from 104,033 in 2015 to 109,319 in 2016, a 5% increase. Fresenius Medical Care  intends to boost annual revenues to $28 billion by 2020.

Philips (Healthcare) – 2016 revenue: $16bn – 5th on a list of top medical device companies, Philips is a global conglomerate company that is the largest manufacturer of lighting in the world. Their healthcare segment is also hugely successful, developing medical devices in a number of therapy areas including anaesthesia, oncology and cardiology. The company experienced a 3% growth in sales in 2016 in part thanks to a serious of successful growth initiatives, including the acquisition of PathXL in June 2016 and the integration of Volcano back in 2015.

have a look at ProClinical Life Sciences Recruitment Blog to see the full top 10 list!

3-D scanning with water

source: this website

A global team of computer scientists and engineers have developed an innovative technique for 3D shape reconstruction. This new approach to 3D shape acquisition is based on the well-known fluid displacement discovery by Archimedes and turns modeling surface reconstruction into a volumetric problem. Most notably, their method accurately reconstructs even hidden parts of an object that typical 3D laser scanners are not able to capture.

3D scannerTraditional 3D shape acquisition or reconstruction methods are based on optical devices, most commonly, laser scanners and cameras that successfully sample the visible shape surface. But this common approach tends to be noisy and incomplete. Most devices can only scan what is visible to them but hidden parts of an object remain inaccessible to the scanner’s line of sight. For instance, a typical laser scanner cannot accurately capture the belly or underside of an elephant statue, which is hidden from its line of sight.

The team’s dip transform to reconstruct complex 3D shapes utilizes liquid, computing the volume of a 3D object versus its surface. By following this method, a more complete acquisition of an object, including hidden details, can be reconstructed in 3D. Liquid has no line of sight; it can penetrate cavities and hidden parts, and it treats transparent and glossy materials identically to opaque materials, thus bypassing the visibility and optical limitations of optical and laser-based scanning devices.

water 3D scanningThe research, “Dip Transform for 3D Shape Reconstruction“, is authored by a team from Tel-Aviv University, Shandong University, Ben-Gurion University and University of British Columbia. They implemented a low-cost 3D dipping apparatus: objects in the water tank were dipped via a robotic arm. By dipping an object in the liquid along an axis, they were able to measure the displacement of the liquid volume and form that into a series of thin volume slices of the shape. By repeatedly dipping the object in the water at various angles, the researchers were able to capture the geometry of the given object, including the parts that would have normally been hidden by a laser or optical 3D scanner.

The team’s dip transform technique is related to computed tomography, an imaging method that uses optical systems for accurate scanning or to produce detailed pictures. However, the challenge with this more traditional method is that tomography-based devices are bulky and expensive and can only be used in a safe, customized environment. The team’s approach is both safe and inexpensive, and a much more appealing alternative for generating a complete shape at a low-computational cost using an innovative data collection method.

In the study, they demonstrated the new technique on 3D shapes with a range of complexity, including a hand balled up into a fist, a mother-child hugging and a DNA double helix. Their results show that the dip reconstructions are nearly as accurate as the original 3D model, paving the way to a new world of non-optical 3D shape acquisition techniques.

Une prothèse de genou connectée

source: cet article du Télégramme

on récolte ce que l’on sème: celui ci, celui là

Un projet de prothèse de genou connectée porté par une équipe brestoise vient de décrocher une subvention nationale de 7,9 M€. Des capteurs signaleront une infection ou un défaut mécanique de la prothèse.

Le budget total de notre projet FollowKnee est de 24 M€, il nous fallait trouver les deux tiers du financement, l’Agence nationale de recherche nous apporte 7,9 M€. L’originalité de cet appel à projets pour la recherche hospitalo-universitaire en santé est d’associer obligatoirement la recherche, la médecine et les entreprises. L’objectif est d’arriver, au bout de cinq ans, à un produit commercialisable avec une évaluation clinique des résultats“, explique le Pr Eric Stindel, directeur du Laboratoire de traitement de l’information médicale (LaTIM) unité Inserm 1101, porteur du projet.

L’enjeu est d’importance, la pose de prothèse de genou a progressé de plus de 600 % en 20 ans et cela va continuer. L’an passé, en France, un peu moins de 80.000 prothèses de genou ont été posées, contre 150.000 prothèses de hanche. “Cette progression est due au fait que les patients jeunes ne veulent plus rester souffrir. Ils savent que les prothèses fonctionnent et vont leur permettre de refaire du sport, de la course ou du golf. De plus, l’épidémie d’obésité aggrave aussi les problèmes d’arthrose des genoux. Un kilo de plus sur la balance représente plusieurs kilos de contrainte sur un genou et une usure plus rapide“.

Des capteurs intégrés à la prothèse vont être développés par le Commissariat à l’énergie atomique (CEA) de Grenoble, l’un des trois partenaires industriels. Ces capteurs vont suivre le fonctionnement mécanique, vérifier si le genou plie bien et détecter le plus tôt possible des signes d’infection par la mesure de la température et du pH (NDLR mesure de l’acidité).

L’échec de la pose d’une prothèse est lié soit à un descellement de l’os en raison de contraintes particulières, soit à une infection“, précise le Pr Eric Stindel, qui pilote par ailleurs le centre de référence en infections ostéo-articulaires complexes de Brest. Le patient pourra récupérer, dans son smartphone par exemple, des informations sur sa prothèse et le rééducateur adaptera ses exercices.

imascap

En cas de signaux d’infection, le patient entrera rapidement dans une filière de dépistage. Le suivi sera plus personnalisé. Le premier partenaire industriel du projet est la société Imascap, start-up brestoise créée par un doctorant du LaTIM en 2009 qui va commercialiser le produit.

L’innovation de ce projet réside aussi dans la technique de fabrication de cette prothèse, grâce à une imprimante 3D et aux images d’un scanner. Ce sera le travail de la société SLS, en Ille-et-Vilaine, spécialisée dans les implants dentaires, qui va se diversifier dans la prothèse orthopédique à partir d’un alliage de métal et de céramique. Le troisième partenaire industriel est Immersion, une société bordelaise leader français de la réalité augmentée, qui va créer des outils d’aide à la pose de cette prothèse. Les autres partenaires du projet sont l’Insitut de recherche technologique (IRT Bcom), qui a un site brestois, et le CHRU de Brest, qui a financé le montage du projet. “En sortie, il y aura au moins une quinzaine d’emplois à la clef en tout chez nos partenaires industriels. C’est un projet à coeur breton, une vraie reconnaissance, à la fois, pour les équipes de recherche et pour les industriels qui en sont issus comme Imascap“, conclut le Pr Stindel.

la brunitura dei metalli

fonte: wiki

La brunitura è anche detta bronzatura o metallocromia. Si tratta del processo di colorazione superficiale di un metallo ed è praticata principalmente per fornire una protezione contro l’ossidazione, che altera le proprietà del metallo. Tramite la brunitura, il metallo cambia in aspetto assumendo una colorazione più scura.

brun3Escludendo l’acciaio inox, sui metalli ferrosi la brunitura si può eseguire principalmente in due modi:

  1. immergendo il pezzo di ferro o acciaio, ben pulito e sgrassato, in un bagno d’ acqua con acetato di piombo, iposolfito di sodio ed altre sostanze;
  2. immergendo il pezzo, sempre ben pulito e sgrassato, in un bagno a circa 100 °C di acqua in cui vengono disciolti iposolfito di sodio, acetato di piombo e solfato di rame.

Quantità delle sostanze e tempi di immersione possono variare a seconda del metallo da trattare e del colore che questo deve assumere (il metallo assume via via vari colori passando dal blu chiaro, al porpora, al grigio, fino al nero). Ad esempio, una brunitura nera e brillante su ferro ed acciaio si può anche ottenere immergendo il pezzo scaldato fino al colore giallo in olio e, una volta raggiunta la brunitura, scaldandolo ancora lievemente per poi lasciarlo raffreddare a temperatura ambiente. Un altro sistema, assai vecchio (utilizzato generalmente dai restauratori) ma che non altera le proprietà della tempra consiste nel cospargere il pezzo con cera vergine di api alla quale viene successivamente dato fuoco. Una volta che questa è completamente bruciata il pezzo viene lasciato lentamente raffreddare.

brun1Sui metalli non ferrosi come rame, ottone o bronzo si può ottenere una brunitura utilizzando una soluzione di solfuro di potassio (chiamato comunemente “fegato di zolfo“), semplicemente immergendovi i pezzi ben sgrassati anche a freddo e sciacquandoli poi in acqua corrente.

A livelli industriali, uno dei vari metodi di brunitura più utilizzati consiste nel trattamento galvanico. Il pezzo da trattare viene immerso in una soluzione acquosa di solfantimoniato di sodio (o “sale di Schlippe“), di carbonato di sodio anidro e successivamente subisce un’elettrolisi per alcuni minuti (temperatura ambiente, corrente di 0,35 ampere, tensioni comprese tra 2,4 e 4 volt). Questo metodo è impiegato anche nel trattamento di rame ed ottone. Esistono poi in commercio soluzioni brunitrici già pronte, che agiscono anche a freddo e richiedono solo una preventiva accurata pulizia dei pezzi da trattare.

brun2

È sufficiente stendere un velo di prodotto (o più se si desidera un colore più scuro) sul pezzo; una volta raggiunto il colore voluto, il pezzo va sciacquato in acqua ed asciugato accuratamente, quindi lasciato immerso in olio per un certo tempo (onde evitare la possibile ossidazione che potrebbe sopravvenire nelle ore immediatamente successive). Tali soluzioni esistono sia per metalli ferrosi che non, ma generalmente non permettono di ottenere una brunitura omogenea e uniforme su pezzi di grandi dimensioni.