Artroscopia del ginocchio & instabilità rotulea

fonti: uno, due e tre

L’artroscopia del ginocchio è una tecnica chirurgica minimamente invasiva, che permette la diagnosi e la cura di numerose problematiche del ginocchio. La sua esecuzione prevede la pratica di piccolissime incisioni cutanee a livello del ginocchio e l’impiego dell’artroscopio, uno strumento a forma di cannuccia e dotato di una telecamera e una fonte luminosa. Con un unico strumento è possibile sia effettuare la diagnosi che operare al tempo stesso, con un notevole risparmio di tempo. Le procedure di artroscopia del ginocchio impongono una certa preparazione, la quale tuttavia è molto semplice da attuare. Nell’artroscopia del ginocchio, fase post-operatoria, tempi di guarigione e ritorno alle attività quotidiane variano in base ai motivi di attuazione della tecnica chirurgica in questione.

https://www.my-personaltrainer.it/imgs/2018/02/17/artroscopia-del-ginocchio-artroscopio-orig.jpeg

L’artroscopio presenta, a un’estremità, una rete di fibre ottiche con la doppia funzione di telecamera e sorgente luminosa, e, quasi all’altra estremità, un cavo per l’accensione della rete a fibre ottiche e per il collegamento della suddetta telecamera a un monitor. Durante gli interventi in artroscopia del ginocchio, l’artroscopio è lo strumento che il medico operante introduce, dalla parte della telecamera e della sorgente luminosa, all’interno dell’articolazione del ginocchio e che utilizza, successivamente, come macchina da presa esplorativa capace di trasmettere quanto filmato nel monitor collegato.
Grazie alla sua forma a cannuccia, l’artroscopio è un apparecchio estremamente maneggevole e capace di incunearsi in ogni angolo dell’articolazione; inoltre, sempre grazie alla sua forma assottigliata, la sua introduzione all’interno del corpo umano non richiede l’esecuzione di una grande incisione, ma solo di una piccola apertura cutanea non superiore al centimetro.

Si posiziona l’artroscopio nell’articolazione del ginocchio, dove è possibile visualizzare i menischi, le cartilagini e i legamenti crociati (artroscopia diagnostica). Se è presente una patologia a carico di queste strutture è possibile passare alla fase chirurgica vera e propria con possibilità di effettuare meniscectomie (asportazione di frammenti meniscali), e regolarizzazione (nei limiti del possibile) delle lesioni cartilaginee; è possibile sotto guida artroscopica effettuare ricostruzioni legamentose dei legamenti crociati.

INSTABILITÀ ROTULEA

L’instabilità rotulea è una patologia che nasce dalla incongruenza articolare nello scorrimento della rotula sulla doccia femorale (troclea) e si codifica in rapporto al grado/gravità, dall’iperpressione rotulea esterna alla lussazione rotulea con il grado intermedio della sublussazione rotulea.

I sintomi variano in rapporto alla gravità. Nei casi più lievi, il sintomo più frequente è il dolore anteriore al ginocchio e dolore che compare mantenendo a lungo una posizione a ginocchio flesso. Nei casi di maggiore gravità, il paziente lamenta “cedimenti” o instabilità del ginocchio, non riesce a praticare adeguatamente sport in carico e può riferire anche la “fuoriuscita” della rotula, incompleta (sublussazione) o completa (lussazione).

L’approfondito esame clinico specialistico è fondamentale per inquadrare correttamente la patologia e deve valutare non solo la condizione del ginocchio, ma di tutto l’arto inferiore (analisi dell’asse biomeccanico e della rotazione del femore, condizione muscolare etc.) e si integra all’acquisizione di specifici esami strumentali quali RX assiali con proiezione rotulea, RMN e TC con scansioni specifiche/protocollo lionese. È importante valutare in modo accurato la patologia monitorando anche la condizione cartilaginea dell’articolazione femoro-rotulea in quanto l’incongruenza od instabilità può produrre in varia misura una usura accelerata della cartilagine.

Il trattamento conservativo (comprensivo di potenziamento e riequilibrio muscolare) porta a risultati positivi anche nei casi di minore gravità, si integra all’utilizzo di terapia fisica nelle fasi acute e si associa anche all’utilizzo di specifiche ginocchiere, che possono portare ad un oggettivo miglioramento della congruenza rotulea e può premettere di praticare attività sportiva. Il “banco di prova” del recupero funzionale è nello sportivo è la completa ripresa dell’attività in assenza di limitazioni funzionali. In alternativa, il trattamento artroscopico varia in rapporto alla gravità e condizione della patologia.

Arriva Hunova, un robot per la riabilitazione

fonte: Ansa.it

section-3Le nuove tecnologie e l’industria 4.0 estendono le loro applicazioni nel settore sanitario con un robot per la riabilitazione di pazienti con disabilità in ambito neurologico e spinale. Il robot si chiama hunova, è nato con brevetti dell’Istituto Italiano di Tecnologia (IIT) ed è prodotto e commercializzato in tutto il mondo da Movendo Technology, la prima medical company made in Italy attiva nella robotica riabilitativa (50% Dompé, 43% i fondatori e inventori Simone Ungaro, Carlo Sanfilippo, Jody Saglia, 7% IIT).

hunova integra meccatronica, elettronica, sensoristica, e software: 4 motori, 2 sensori di forza/coppia, un sensore inerziale, più di 100 metri di cavi, un cervello elettronico, 1 interfaccia e 4 schede elettroniche di controllo. La sua intelligenza artificiale o centro di controllo combina big data, algoritmi avanzati di interazione uomo-macchina e rete di sensori, mantenendo un’estrema semplicità di utilizzo da parte dell’operatore come del paziente. I fattori che caratterizzano hunova sono la rilevazione e misurazione oggettiva dei parametri biomeccanici del paziente e l’elevato livello di assistenza e intervento robotico che facilita e guida chi è sottoposto alla riabilitazione, stimolandolo con protocolli somministrati in forma di gioco (videogame interattivi). Gli ambiti di applicazione terapeutica in campo neurologico riguardano gli esiti di ictus ischemico con o senza emiplegia, malattie neurodegenerative, morbo di Parkinson, Sclerosi Multipla, ma anche il campo ortopedico, quello geriatrico e della medicina dello sport.

Al momento sono operativi 28 robot di cui 2 negli Stati Uniti, 1 in Germania e Grecia. Il centro spinale dell’ospedale Niguarda di Milano diretto da Michele Spinelli e il Centro di Recupero e Riabilitazione Funzionale Villa Beretta (Lecco) diretta da Franco Molteni (Ospedale Valduce di Como) stanno implementando l’uso del robot.

Immagine-Configurazione-Monopodalica

Une prothèse de genou connectée

source: cet article du Télégramme

on récolte ce que l’on sème: celui ci, celui là

Un projet de prothèse de genou connectée porté par une équipe brestoise vient de décrocher une subvention nationale de 7,9 M€. Des capteurs signaleront une infection ou un défaut mécanique de la prothèse.

Le budget total de notre projet FollowKnee est de 24 M€, il nous fallait trouver les deux tiers du financement, l’Agence nationale de recherche nous apporte 7,9 M€. L’originalité de cet appel à projets pour la recherche hospitalo-universitaire en santé est d’associer obligatoirement la recherche, la médecine et les entreprises. L’objectif est d’arriver, au bout de cinq ans, à un produit commercialisable avec une évaluation clinique des résultats“, explique le Pr Eric Stindel, directeur du Laboratoire de traitement de l’information médicale (LaTIM) unité Inserm 1101, porteur du projet.

L’enjeu est d’importance, la pose de prothèse de genou a progressé de plus de 600 % en 20 ans et cela va continuer. L’an passé, en France, un peu moins de 80.000 prothèses de genou ont été posées, contre 150.000 prothèses de hanche. “Cette progression est due au fait que les patients jeunes ne veulent plus rester souffrir. Ils savent que les prothèses fonctionnent et vont leur permettre de refaire du sport, de la course ou du golf. De plus, l’épidémie d’obésité aggrave aussi les problèmes d’arthrose des genoux. Un kilo de plus sur la balance représente plusieurs kilos de contrainte sur un genou et une usure plus rapide“.

Des capteurs intégrés à la prothèse vont être développés par le Commissariat à l’énergie atomique (CEA) de Grenoble, l’un des trois partenaires industriels. Ces capteurs vont suivre le fonctionnement mécanique, vérifier si le genou plie bien et détecter le plus tôt possible des signes d’infection par la mesure de la température et du pH (NDLR mesure de l’acidité).

L’échec de la pose d’une prothèse est lié soit à un descellement de l’os en raison de contraintes particulières, soit à une infection“, précise le Pr Eric Stindel, qui pilote par ailleurs le centre de référence en infections ostéo-articulaires complexes de Brest. Le patient pourra récupérer, dans son smartphone par exemple, des informations sur sa prothèse et le rééducateur adaptera ses exercices.

imascap

En cas de signaux d’infection, le patient entrera rapidement dans une filière de dépistage. Le suivi sera plus personnalisé. Le premier partenaire industriel du projet est la société Imascap, start-up brestoise créée par un doctorant du LaTIM en 2009 qui va commercialiser le produit.

L’innovation de ce projet réside aussi dans la technique de fabrication de cette prothèse, grâce à une imprimante 3D et aux images d’un scanner. Ce sera le travail de la société SLS, en Ille-et-Vilaine, spécialisée dans les implants dentaires, qui va se diversifier dans la prothèse orthopédique à partir d’un alliage de métal et de céramique. Le troisième partenaire industriel est Immersion, une société bordelaise leader français de la réalité augmentée, qui va créer des outils d’aide à la pose de cette prothèse. Les autres partenaires du projet sont l’Insitut de recherche technologique (IRT Bcom), qui a un site brestois, et le CHRU de Brest, qui a financé le montage du projet. “En sortie, il y aura au moins une quinzaine d’emplois à la clef en tout chez nos partenaires industriels. C’est un projet à coeur breton, une vraie reconnaissance, à la fois, pour les équipes de recherche et pour les industriels qui en sont issus comme Imascap“, conclut le Pr Stindel.

Comment rééquilibrer les ligaments du genou sans ré-opérer un patient ?

Un nouveau volet de Demain Chez Vous a été publié! Après le premier épisode, c’est au tour de mon projet de thèse 🙂

L’arthrose conduit à la pose de près de 70 000 prothèses du genou par an en France. Au fil du temps, la prothèse subit l’évolution des modes de vie du patient ce qui peut conduire au descellement de la prothèse ou à déséquilibrage des ligaments. Il est alors nécessaire de procéder à une chirurgie dite de reprise. Pour pallier ce problème une nouvelle génération d’implants orthopédiques instrumentés est en cours de développement à Télécom Bretagne. Le médecin pourra corriger la tension des ligaments en actionnant le système placé dans la prothèse.
Ce dispositif innovant et prometteur est développé à Télécom Bretagne au Latim, sous la responsabilité de Chafiaa Hamitouche.

Squat movements: some hints

source: this website

The squat movement can be described as a compound exercise which involves multiple groups of muscles. It is usually performed by recreational and professional athletes to strengthen hip, knee and ankle muscles. The squat exercise consists of two main phases, lowering and standing.

The lowering phase

The body starts from a standing position and, replicating the motion performed while sitting on a chair, it is lowered until the squat configuration is achieved. All the lower limb joints are involved, with several groups of muscles that contract as they lengthen. This results in eccentric contractions.squatL

  • Hip: flexion movement. The hip extensors (gluteus maximus, semimembranosus, semitendinosis and biceps femoris) mainly control the speed of the body, whose lowering is naturally supported by gravity.
  • Knee: flexion movement. The knee extensors (rectus femoris, vastus medialis, vastus intermedius and vastus lateralis) mainly allow to tune the knee bending speed.
  • Ankle: dorsiflexion movement. The plantarflexor muscles (gastrocnemius and soleus) mainly counteract the pull of gravity and provide a stable support on the ground.
The standing phase

squatSThe body leaves the squat configuration and returns to an upright position. The speed of this movement is continuously controlled, as well as the stable support provided by the feet. Once again, this is ensured by the combined action of all the lower limb joints. The same groups of muscles as for the lowering phase now shorten as they contract. This produces concentric contractions.

  • Hip: extension movement. The hip extensors mainly bring the trunk back to an upright position.
  • Knee: extension movement. The knee extensors help contracting and smoothly straightening the knee joints.
  • Ankle: plantarflexion movement. The plantarflexor muscles push down against the ground and are responsible for the overall stability of the body.

 

the chairless chair by Noonee

source: L. Seward’s post on this website

Coming out of NCCR Robotics lab, the Bio-Inspired Robotics laboratory at University of Cambridge (previously at ETH Zurich, Switzerland), Noonee® is a revolutionary start-up business aiming to solve healthcare problems within the manufacturing industry. The idea is to provide an exoskeleton that supports the weight of the user only when they feel tired , rather than continuously taking on this weight – meaning that the wearer is using their muscles and actively, rather than passively, sitting.

P8iHDpcWithin the manufacturing industry, keeping employees healthy has been a major concern and challenge for many companies around the world for a long time. Jobs often involve spending long periods of time bending and crouching and as a result can leave staff with substantial back and knee problems. Of 215 million industry sector workers in the EU, a staggering 85 million are reported to suffer from muscle related disorders. Market solutions that are currently available may also pose problems as they limit short term tiredness by taking all the weight of the user, which can lead to muscle weakening. What is needed is a product that can support staff working on production lines while keeping them healthy. The “chair” is not a chair as we know it, but more of an exoskeleton for the legs with a belt to attach it to the hips and straps that wrap around the thighs. The slim structure has joints that allow the wearer to move freely, but when the wearer is in a position they wish to stay in for a long time (e.g. crouching under a car on a production line), this position can be fixed, meaning that the wearer does not need to use the same muscle groups for long periods of time to hold the position. The advantage of such a structure is that it can be worn anywhere and can also be used when standing and walking. This reduces the space required as compared to a traditional chair and reduces the hassle when compared to other solutions, such as chairs that are strapped to the user.

imageThe Chairless Chair® is currently still in prototype and the current version requires the user to fix a position by crouching down into the required position and pushing a button. It is hoped that future iterations of the Chairless Chair® will be actuated to allow the system to become intelligent and understand the intention of the user, allowing it to be fixed into position without any additional input from the wearer.

all’IIT si stampano cartilagini!

da quest’articolo de La Repubblica dell’11/10/15

L’intuizione del genovese Luca Coluccino: togliere la “memoria” al tessuto e riprodurlo

L’idea gli è venuta a Pittsburgh — la città della Pennsylvania famosa per Flashdance e le antiche industrie dell’acciaio — ma continuerà a svilupparla sulla collina di Morego, a Genova, nell’Istituto Italiano di Tecnologia. Luca Coluccino ha 28 anni, una laurea in ingegneria biomedica e una passione per le articolazioni delle ginocchia. Lo si capisce dalla tesi di laurea e dal suo dottorato di ricerca al’IIT, dove dal 2013 studia come ricostruire e riparare le cartilagini.

084139429-51f017df-9dea-4c3a-95e2-cc1e89146d41Lo scorso anno, durante un periodo all’Università di Pittsburgh, Luca ha azzardato: “Ma perché invece di fare protesi sintetiche non proviamo a creare una cartilagine vera? Una cartilagine senza parti artificiali. Biologica, umana. E poi usiamo questo tessuto senza forma come “inchiostro” per una stampante in 3D“. Era un’idea un po’ folle: creare la cartilagine è l’ambizione dei gruppi di ricerca più avanzati del mondo, dalla Corea del Sud agli Stati Uniti. Ci provano da anni, senza successo. Ma Luca e il team con cui lavora — il gruppo Smart Materials del Dipartimento di Nanofisica dell’IIT — ci sono riusciti. E a metà settembre hanno spiegato come fare al TERMIS di Boston, la conferenza mondiale di riferimento per la medicina rigenerativa.

Luca arriva all’IIT con un maggiolone anni ’70, la giacca stilosa e una barbetta bionda accennata. A parlar di cartilagini gli si illuminano gli occhi. “Sono affascinanti perché non si ricreano come le ossa — spiega — Se un adulto ha una lesione grave a una cartilagine bisogna sostituirla con protesi metalliche o plastiche. Ma sono parti estranee al corpo umano: causano problemi di rigetto e non durano all’infinito“. Tra qualche anno potrebbe non essere più così, perché il team dell’IIT in collaborazione con l’Università di Pittsburgh (dove Coluccino era sotto la guida di un altro genovese, il ricercatore Riccardo Gottardi) ha trovato la “ricetta” per ricostruire cartilagini, tendini e menischi. Ad ascoltare Luca Coluccino sembra semplice: si tratta chimicamente una cartilagine, per esempio, sino a farla diventare un liquido che ha perso tutte le informazioni che nel corpo di un’altra persona potrebbero dare reazione immunitaria. “Solo una cosa le deve rimanere: la ‘memoria’ di essere una cartilagine“, avverte Coluccino.