Faster, noninvasive method to determine the severity of a heart failure

source: this website

tueMethods currently employed to determine the severity of a heart failure are very limited. Researchers at Eindhoven University of Technology and the Catharina Hospital in Eindhoven have therefore developed a method that is very quick, non-invasive, cost-effective and can be performed at the hospital bedside. Moreover, this method appears to have a predictive value for whether or not a double pacemaker will be successful. Researchers Ingeborg Herold and Salvatore Saporito received their doctorates last month for their study.

Heart failure – when the heart is no longer able to pump enough blood through the body – is a very common problem. To get the right treatment, it is important to measure how well the heart is still able to do its job. There are currently various methods for doing this, but all have their limitations. Sensors often need to be placed in the large arteries, via the shoulder or neck, and that is quite an invasive procedure. MRI is a possibility, but not for patients that are seriously ill. Patients that are short of breath nearly always undergo blood analysis, a method that examines the concentration of a particular protein in the blood and provides a very good, patient-friendly indicator, but it takes several hours before the outcome is known.

heart-failure.jpg

The Eindhoven researchers have developed a patient-friendly method that uses an echo scanner, which is known mainly for echoes performed during pregnancy, to determine the severity of heart failure. To do this, they measure the time it takes for the blood to travel from the heart’s right ventricle through the lungs to the left ventricle, which is responsible for pumping oxygenated blood through the body. In order to measure this pulmonary transit time (PTT), they inject harmless microbubbles that can be seen clearly by the echo scanner. They then look at the heart and see how long it takes for the bubbles to get from the right to the left ventricle.

animatedpacemakerIt may seem simple enough but there was a significant scientific challenge in calculating an unequivocal PTT for the observed microbubbles that get dispersed in the blood flow. But once that had been solved, they compared the transit time with a number of existing indicators, developing a similar method on the basis of MRI. Comparisons revealed that the PTT measured with the echo scanner provides an excellent indicator for the severity of a heart failure. A healthy heart pumps the blood quickly through the lungs. The longer the PTT, the less well the heart performs. They examined subjects whose heart muscle no longer contracted well, which is the most common type of heart failure. Before the method can be used, there is still work to be done. For example, if it is to be both practical and fast, the analysis will have to be automated.

Ingeborg Herold gained her doctorate on Thursday 17 November for her thesis “Assessment of cardiopulmonary function by contrast enhanced echocardiography” while Salvatore Saporito received his PhD the same day for his thesis “Cardiovascular MRI quantifications in heart failure“.

Osteoarthritis: some hints

sources: Orthopaedic Research Society and PR Newswire

According to WikipediaOsteoarthritis (OA) is a type of joint disease that results from breakdown of joint cartilage and underlying bone. The most common symptoms are joint pain and stiffness. Initially, symptoms may occur only following exercise, but over time may become constant. Other symptoms may include joint swelling, decreased range of motion, and when the back is affected weakness or numbness of the arms and legs. The most commonly involved joints are those near the ends of the fingers, at the base of the thumb, neck, lower back, knee, and hips. Joints on one side of the body are often more affected than those on the other. Usually the symptoms come on over years. It can affect work and normal daily activities. Unlike other types of arthritis, only the joints are typically affected.

OAOA affects the entire joint, progressively destroying the articular cartilage, including damage to the bone. Patients suffering from OA have decreased mobility as the disease progresses, eventually requiring a joint replacement since cartilage does not heal or regenerate. According to a 2010 Cleveland Clinic study, OA is the most prevalent form of arthritis in the United States, affecting more than 70% of adults between 55 and 78 years of age (that is, millions of people).

My father was in major pain from his osteoarthritis,” explains Riccardo Gottardi, a scientist at the University of Pittsburgh supported by a Ri.MED Foundation fellowship.  “He was in so much pain that he had to undergo a double hip replacement followed by a knee replacement soon afterwards. I could see the debilitating and disabling effects the disease had on him, as he was restricted in his mobility and never fully recovered even after surgery. This was very different from the person that I knew, who had always been active and never shied away from long hours of work in his life – he just could not do it anymore.

For scientists like Gottardi, a key obstacle in understanding the mechanisms of osteoarthritis and finding drugs that could heal cartilage, is that cartilage does not exist separately from the rest of the body. Cartilage interacts with other tissues of the joint, especially with bone. Bone and cartilage strongly influence each other and this needs to be taken into account when developing new drugs and therapies.

cartilageGottardi and a team of researchers at the Center for Cellular and Molecular Engineering, led by Dr. Rocky Tuan, have developed a new generation system to produce engineered cartilage, bone and vasculature, organized in the same manner as they are found in the human joint.  This system is able to produce a high number of identical composite tissues starting from human cells. The team will use this system to study the interactions of cartilage with vascularized bone to identify potential treatments for osteoarthritis. The team’s research has two main objectives: to help understand how cartilage interacts with the other joint tissues, especially bone; and to help develop new effective treatments that could stop or even reverse the disease.  Their patent pending system is the first of its kind, and offers a number of advantages including the use of human cells that replicate native tissues. This system more closely matches the effects on humans than standard animal testing could achieve.

The team of scientists is further developing their system to produce tissues composed of more and different cell types that could better replicate the human joint. They have also started a number of collaborations with other research groups and companies that are interested in using the system to investigate other joint diseases and to test their product. “After seeing what my father went through,” says Gottardi, “I decided that I did not want to just watch by working on diagnostics, but rather, I wanted to be able to do something about osteoarthritis and contribute to the improvement of current treatment options.

Gottardi’s work was recently presented at the Annual Meeting of the Orthopaedic Research Society. Founded in 1954, the Orthopaedic Research Society strives to be the world’s leading forum for the dissemination of new musculoskeletal research findings.

Squat movements: some hints

source: this website

The squat movement can be described as a compound exercise which involves multiple groups of muscles. It is usually performed by recreational and professional athletes to strengthen hip, knee and ankle muscles. The squat exercise consists of two main phases, lowering and standing.

The lowering phase

The body starts from a standing position and, replicating the motion performed while sitting on a chair, it is lowered until the squat configuration is achieved. All the lower limb joints are involved, with several groups of muscles that contract as they lengthen. This results in eccentric contractions.squatL

  • Hip: flexion movement. The hip extensors (gluteus maximus, semimembranosus, semitendinosis and biceps femoris) mainly control the speed of the body, whose lowering is naturally supported by gravity.
  • Knee: flexion movement. The knee extensors (rectus femoris, vastus medialis, vastus intermedius and vastus lateralis) mainly allow to tune the knee bending speed.
  • Ankle: dorsiflexion movement. The plantarflexor muscles (gastrocnemius and soleus) mainly counteract the pull of gravity and provide a stable support on the ground.
The standing phase

squatSThe body leaves the squat configuration and returns to an upright position. The speed of this movement is continuously controlled, as well as the stable support provided by the feet. Once again, this is ensured by the combined action of all the lower limb joints. The same groups of muscles as for the lowering phase now shorten as they contract. This produces concentric contractions.

  • Hip: extension movement. The hip extensors mainly bring the trunk back to an upright position.
  • Knee: extension movement. The knee extensors help contracting and smoothly straightening the knee joints.
  • Ankle: plantarflexion movement. The plantarflexor muscles push down against the ground and are responsible for the overall stability of the body.

 

la Sclerosi Multipla sarà diagnosticata tramite un nuovo tipo di risonanza magnetica

fonte: questo articolo de Il Secolo XIX

(tutti i diritti appartengono all'autore, Nicla Pancera)

La sclerosi multipla (SM) è una malattia autoimmune del sistema nervoso centrale in cui il sistema immunitario colpisce la guaina mielinica che riveste le fibre nervose nel cervello, nel midollo spinale e dei nervi ottici. Con il progredire di questo processo, che causa anche la comparsa di cicatrici (sclerosi), esse vanno via via perdendo la capacità di trasmettere il segnale elettrico agli altri nervi. Può manifestarsi in persone di qualsiasi età e condizione, ha prevalentemente un decorso cronico in cui la malattia progredisce e può determinare gravi invalidità. La SM colpisce 75mila italiani e 2,5 milioni di persone nel mondo.

Lo studio britannico, pubblicato sulla rivista Multiple Sclerosis Journal, rivela che le lesioni cerebrali tipiche della sclerosi multipla (SM) possono essere distinte da lesioni simili, ma dovute ad altre patologie, utilizzando una risonanza magnetica (RM) a 3 tesla (3T) invece che a 7 tesla (7T). Quest’ultima è un’apparecchiatura più potente che permette questa discriminazione in modo agevole ma che è ancora prevalentemente utilizzata solo per scopi di ricerca. Lo studio è stato condotto su un limitato numero di pazienti del dipartimento di neurologia del Nottingham University Hospitals (NHS) Trust: 10 soggetti con SM e 10 soggetti non SM ma con lesioni microangiopatiche nella sostanza bianca cerebrale. Utilizzando particolari sequenze di acquisizione con una RM 3T hanno mostrato che in tutti i pazienti con SM era visibile una vena centrale (lesioni tipiche della malattia) in più del 45% delle lesioni cerebrali, mentre nei pazienti con malattia ischemica dei piccoli vasi era presente una vena centrale in meno del 45% delle lesioni. Applicando la stessa analisi ad un secondo gruppo di pazienti, la discriminazione tra lesioni da SM e non SM è stata, oltre che accurata, anche piuttosto rapida, richiedendo soltanto 2 minuti per soggetto.

zzz

Riuscire a distinguere in questo modo lesioni cerebrali da SM da altre lesioni cerebrali con la RM è quindi fondamentale per la diagnosi nei casi in cui qualche lesione appaia, ma non ne sia chiara la natura. E fare la diagnosi subito e presto è molto importante perchè bisogna cercare di bloccare la malattia il più prima possibile. Ma una risonanza di una certa sensibilità conta soprattutto nei controlli di progressione della malattia, quando si valuta il “carico lesionale“; quando da un controllo all’altro compaiono nuove lesioni, vederle o non vederle, o scambiare una nuova lesione di tipo vascolare con una lesione da SM può far cambiare la terapia. Le immagini RM sono ugualmente importanti anche nel monitoraggio terapeutico, ossia nella valutazione degli effetti delle terapie.

La novità dello studio britannico è l’esser riusciti, pur con una casistica di controlli limitata, a distinguere con grande accuratezza lesioni da SM dalle altre con un’unica sequenza abbattendo i tempi dell’esame pur mantenendo l’accuratezza“, spiega il professor Andrea Falini, Direttore dell’Unità di Neuroradiologia dell’Ospedale San Raffaele e ordinario di Neuroradiologia dell’Università Vita-Salute San Raffaele. Falini, insieme al neurologo Massimo Filippi e alla ricercatrice Martina Absinta dell’Unità di Neuroimaging Quantitativo, costituisce uno dei numerosi gruppi di ricerca nel mondo al lavoro su questo.

Ma l’Italia potrebbe non godere pienamente del vantaggio di cui parlano gli autori dello studio, quello cioè di poter eseguire l’esame anche con le RM 3T diffuse negli ospedali senza dover ricorrere a “macchine potenti non disponibili per uso clinico“. Infatti, mentre nel resto del mondo le RM 3T sono ormai da molti anni usate per scopi clinici, in Italia purtroppo l’uso di apparecchiature con un campo magnetico sopra i 2 tesla è autorizzato solo per la ricerca (e la domanda di autorizzazione per l’installazione va richiesta di volta in volta al Ministero della Salute). E questo nonostante vi siano oltre 50 risonanze 3T giá installate negli ospedali italiani e sia già in funzione anche un’apparecchiatura RM 7T a Pisa. E così oggi accade che un neuroradiologo, anche di fronte ad un paziente per la cui patologia potrebbe essere decisivo un tipo di analisi ad alta risoluzione, deve seguire la legge e optare per una macchina a 1,5 tesla oppure limitarsi a studiare i pazienti inclusi in specifici protocolli di ricerca. Insomma, le potenzialità della ricerca rischiano di non poter essere sfruttate nel nostro Paese per via di una burocrazia che non sembra rispondere abbastanza in fretta alle sollecitazioni che provengono dalle evidenze scientifiche.

Chi parla due lingue ha il cervello più forte

fonte: questo articolo de La Repubblica

Passando da un idioma all’altro la mente costruisce una riserva. Che gli permette di adattarsi alla nuova situazione e di recuperare le funzioni cognitive. Lo evidenziano le tecniche di riabilitazione post- ictus

 

Parlare due o più lingue aiuta a riprendersi dopo un ictus. Tutto merito della cosiddetta riserva cognitiva: la capacità del cervello di resistere in situazioni di emergenza. A Hyderabad, oltre l’inglese e l’hindi, si parlano l’urdu e il telugu. L’effetto è un cicaleccio variegato di suoni. A tutto vantaggio del cervello che, passando da un idioma all’altro, rafforza le proprie connessioni cerebrali, le sinapsi. Proteggendosi. Anche dai danni dell’ictus.
idioma
Suvarna Alladi è una neurologa del National Institute of Mental Health and Neurosciences di Bangalore, in India, e ha analizzato le perfomance di recupero post-ictus di oltre 600 pazienti proprio nella città poliglotta Hyderabad, dove in tanti, indipendentemente dal livello di istruzione e dallo stato sociale, parlano due o più lingue. Dei 608 pazienti seguiti per oltre due anni 255 ne parlavano una sola e 353 ne parlavano (almeno) due. Questi ultimi avevano performance di recupero nettamente migliori, e nel complesso quelli che avevano funzioni cognitive normali dopo l’ictus erano circa il doppio. Come se il bilinguismo avesse protetto il cervello dal danno, rendendolo più plastico e in qualche modo più forte.
Quando abbiamo due lingue madre il nostro cervello è più attivo in diverse aree. “È come se la nostra corteccia cerebrale svolgesse più compiti nel passare da una lingua all’altra“, commenta Leandro Provinciali, presidente della Società italiana di neurologia. E, spiegano i ricercatori indiani, l’allenamento rafforza il cervello preparandolo a rispondere meglio a eventuali danni.
Quello che accade, continua Provinciali, è la dimostrazione delle grandissime capacità di plasticità e adattamento del cervello: “Nei bilingue la scelta delle parole si fa in base al contesto in cui ci si trova, pescando dalle risorse che servono al momento. Il cervello si allena a sviluppare queste strategie alternative“. Ovvero, se il contesto cambia, come accade in seguito al danno da ictus, il cervello si adatta a rispondere a una nuova situazione. L’idea è che con le lingue il cervello costruisca un pozzo da cui pescare in caso di emergenza. Una riserva cognitiva. Insomma, quando la benzina finisce l’automobile va in riserva e la macchina continua a camminare. Senza che noi ce ne accorgiamo. Quella cognitiva funziona in maniera pressoché simile: quando le abilità vengono compromesse, per esempio dall’ictus, il cervello ripiega sulla riserva per continuare a mantenere le proprie funzioni. A questa riserva cognitiva serve tutto: dalle lezioni di musica, alla lettura, alle lingue ovviamente, spiegano gli scienziati.
Il recupero dall’ictus è l’ultima scoperta dei neurologi che indagano sul cosiddetto “vantaggio dei bilingui”, che , ad esempio, si associa a un ritardo nella comparsa dei sintomi, e quindi della diagnosi, dell’Alzheimer. Ma, bizzarramente, non migliora le abilità linguistiche, hanno notato Suvarna e colleghi. A conferma che saper passare dall’hindi, all’inglese, all’urdu non aiuta a migliorare la lingua in sé. Aiuta, piuttosto, a far riserva.
_

ASU Rehabilitation Robotics Workshop

the 4th ASU Rehabilitation Robotics Workshop will be supported by the Virginia G. Piper Charitable Trust and hosted by Arizona State University

Dates: February 8-9, 2016
Location: Memorial Union, ASU Campus, Tempe

The main theme of this workshop is rehabilitation robotics. However, the workshop will include a wide range of topics aimed at improving quality of life and covering the multidisciplinary field of robotics, including human robot interaction and human motor control. The main goals of the workshop are to discuss the state of handcontrolthe art in rehabilitation robotics and to identify the main challenges in this field.

This workshop is supported by a Piper Health Solutions grant to the School of Biological and Health Systems Engineering at Arizona State University (ASU).

This workshop is open to:

  • Hand_ImageResearchers in the fields of robotics, rehabilitation, assistive devices, and physical human-robot interaction
  • Undergraduate and graduate students in the fields of engineering, medicine, physical rehabilitation, and nursing
  • Clinicians and therapists in neuro-rehabilitation
  • General public

The event is free, however registration is required for admittance to the workshop.

the chairless chair by Noonee

source: L. Seward’s post on this website

Coming out of NCCR Robotics lab, the Bio-Inspired Robotics laboratory at University of Cambridge (previously at ETH Zurich, Switzerland), Noonee® is a revolutionary start-up business aiming to solve healthcare problems within the manufacturing industry. The idea is to provide an exoskeleton that supports the weight of the user only when they feel tired , rather than continuously taking on this weight – meaning that the wearer is using their muscles and actively, rather than passively, sitting.

P8iHDpcWithin the manufacturing industry, keeping employees healthy has been a major concern and challenge for many companies around the world for a long time. Jobs often involve spending long periods of time bending and crouching and as a result can leave staff with substantial back and knee problems. Of 215 million industry sector workers in the EU, a staggering 85 million are reported to suffer from muscle related disorders. Market solutions that are currently available may also pose problems as they limit short term tiredness by taking all the weight of the user, which can lead to muscle weakening. What is needed is a product that can support staff working on production lines while keeping them healthy. The “chair” is not a chair as we know it, but more of an exoskeleton for the legs with a belt to attach it to the hips and straps that wrap around the thighs. The slim structure has joints that allow the wearer to move freely, but when the wearer is in a position they wish to stay in for a long time (e.g. crouching under a car on a production line), this position can be fixed, meaning that the wearer does not need to use the same muscle groups for long periods of time to hold the position. The advantage of such a structure is that it can be worn anywhere and can also be used when standing and walking. This reduces the space required as compared to a traditional chair and reduces the hassle when compared to other solutions, such as chairs that are strapped to the user.

imageThe Chairless Chair® is currently still in prototype and the current version requires the user to fix a position by crouching down into the required position and pushing a button. It is hoped that future iterations of the Chairless Chair® will be actuated to allow the system to become intelligent and understand the intention of the user, allowing it to be fixed into position without any additional input from the wearer.