Testing a Lego car against different obstacles and improving it until it becomes a capable climber. Demonstrates what you need to consider: wheel diameter, gear ratio, 4-wheel drive, tire grip, breakover angle, weight distribution. Enjoy!
Amateur de plongée et de planche à voile depuis son plus jeune âge, Nicolas Carlési, 33 ans, a longtemps cherché à mettre ses compétences d’ingénieur au profit de l’environnement. Il se souvient combien ça l’agaçait, lorsqu’il partait en vacances en Sicile, de nager dans les déchets aux abords des petits ports. C’est pourquoi, il y a quatre ans, il s’est dit qu’il serait judicieux de collecter les déchets en surface avant qu’ils se diluent en mer.
Renseignement pris, le jeune homme comprend que 99 % des ports nettoient leurs eaux avec des épuisettes. Un instrument peu efficace, d’où l’idée d’inventer un petit robot, relève le jeune entrepreneur, titulaire d’un doctorat en robotique sous-marine. Il lui faudra une année et 90 000 € pour concevoir et fabriquer un premier prototype. Depuis, le Jellyfishbot a fait du chemin et conquis des ports aux quatre coins du monde.
Ce mini-robot, qui a la forme d’un catamaran, fonctionne grâce à deux batteries électriques qui alimentent trois propulseurs. De quoi tracter un filet et, ainsi, récolter trente à quarante litres de déchets, aussi bien des bouteilles en plastique que des hydrocarbures et des mégots. Il fallait trouver le système le plus compact possible pour aller chercher les déchets là où ils sont difficilement atteignables , raconte le fondateur de Iadys. Fabriqué dans les ateliers de la société basée à Roquefort-la-Bédoule (Bouches-du-Rhône), le Jellyfishbot peut être équipé avec des filets de différentes tailles.
Jusqu’à 180 microns pour une utilisation scientifique , précise Nicolas Carlési, qui conçoit ces équipements à partir de filets de pêche usagés et d’ailes de voiliers et de kitesurf. Le port de Cassis est le premier à expérimenter le Jellyfishbot, en juin 2018. Suivront, la même année, celui de Cannes et le parc naturel marin de Mayotte. En 2019, l’entreprise convainc une quinzaine de ports français et étrangers, en Asie notamment. Et souhaite poursuivre son développement à l’international, notamment aux États-Unis où l’on compte 12 000 marinas .
La société revoit cependant ses objectifs à la baisse, crise du coronavirus oblige.Nos commandes ont ralenti, certaines discussions en cours n’aboutiront que quand la crise sera terminée. En attendant, Iadys continue sa levée de fonds de 1,5 million d’euros. Une somme destinée à poursuivre le développement commercial de l’entreprise et les investissements en recherche et développement pour mettre au point un nouveau robot capable de fonctionner en flottille, explique Nicolas Carlési. Dans un port de plaisance comme celui de Marseille, un seul robot ne suffit pas, il en faut plusieurs, capables d’agir de manière coordonnée.L’entreprise teste également une version capable de détecter tous types d’obstacles de manière autonome afin de faire du Jellyfishbot un outil polyvalent en capacité d’assister le personnel portuaire aussi bien pour le nettoyage que l’inspection des pontons et le placement des plaisanciers.
De quoi prendre conscience du chemin parcouru et des difficultés à venir. S’il y a encore quelques semaines, Nicolas Carlési et ses six salariés espéraient cette année doubler le chiffre d’affaires de l’entreprise (200 000 € en 2019), le jeune entrepreneur refuse désormais d’avancer un quelconque objectif chiffré.
Ghost Pacer AR è un visore di realtà aumentata (AR), il che significa che sovrappone immagini virtuali al mondo reale. Quando si guarda attraverso il visore, Ghost Pacer proietta un avatar sul percorso. Questo compagno di allenamento virtuale può essere impostato per correre a un certo ritmo o anche replicare una sessione di corsa passata, nostra o di un amico. Un modo per superare letteralmente sé stessi, e guardarsi mentre lo si fa.
Non è l’equivalente di una carota sistemata su un bastone. L’avatar non si limita a restare davanti: lo si può superare, perfino seminarlo se si corre molto. È tutto controllato tramite l’app Ghost Pacer, che consente agli utenti di impostare il percorso e la velocità dell’avatar e di registrare le proprie prestazioni come altri tracker di allenamento. Si sincronizza anche con Strava, una rete di social media per corridori e ciclisti, che consente di convertire le corse di altre persone in percorsi che l’avatar deve seguire.
Dal punto di vista di dimensioni e funzioni, la preoccupazione principale è che sia abbastanza leggero e agile da essere indossato durante la corsa. Ghost Pacer sembra un paio di occhiali da sole leggermente più ingombrante del solito, del peso di soli 90 g (3,2 once). Il display ha una risoluzione di 1.280 x 720 e un campo visivo di 30 gradi. Apparentemente la batteria dura fino a 6 ore e impiega 1 ora per caricarsi tramite USB-C.
Ghost Pacer è attualmente alla ricerca di finanziamenti su Kickstarter, dove ha già raccolto oltre 150.000 dollari, superando il suo obiettivo di 25.000 dollari. Le promesse di super early bird partono da $ 199 per il modello normale e $ 219 per la versione Pro. Se tutto va secondo i piani, le spedizioni dovrebbero iniziare a luglio 2021.
Recently I completed the free online course elements of AI provided by Reaktor and the University of Helsinki. This is a very interesting opportunity for those who would like to learn the basics of AI and machine learning. Combining theory with practical exercises, the course can be completed at the reader’s own pace. Strongly recommended!
The registration for the 9th Summer School on Surgical Robotics (SSSR-2019) is now open (registration deadline: July 26th, 2019).
The School will be held in Montpellier, France, from 23th to 28th September 2019, and is open to Master students, PhD students, Post-docs and participants from industry.
Robotics enables surgery to be less invasive and/or to enhance the performance of the surgeon. In minimally invasive surgery (MIS) for instance, robotics can improve the dexterity of conventional instruments, which is restricted by the insertion ports, by adding intra-cavity degrees of freedom. It can also provide the surgeon with augmented visual and haptic inputs. In open surgery, robotics makes it possible to use in real time pre-operative and per-operative image data to improve precision and reproducibility when cutting, drilling, milling bones, to locate accurately and remove tumours. In both cases, as in other surgical specialities, robotics allows the surgeon to perform more precise, reproducible and dextrous motion. It is also a promising solution to minimize fatigue and to restrict exposition to radiation. For the patient, robotics surgery may result in lower risk, pain and discomfort, as well as a shorter recovery time. These benefits explain the increasing research efforts made all over the world since the early 90’s.
Surgical robotics requires great skills in many engineering fields as the integration of robots in the operating room is technically difficult. It induces new problems such as safety, man-machine cooperation, real time sensing and processing, mechanical design, force and vision-based control. However, it is very promising as a mean to improve conventional surgical procedures, for example in neurosurgery and orthopaedics, as well as to provide innovation in micro-surgery, image-guided therapy, MIS and Natural Orifice Transluminal Endoscopic Surgery (NOTES).
The highly interdisciplinary nature of surgical robotics requires close cooperation between medical staff and researchers in mechanics, computer sciences, control and electrical engineering. This cooperation has resulted in many prototypes for a wide variety of surgical procedures. A few robotics systems are yet available on a commercial basis and have entered the operating room namely in neurosurgery, orthopaedics and MIS.
Depending on the application, surgical robotics gets more or less deeply into the following fields:
multi-modal information processing;
modelling of rigid and deformable anatomical parts;
pre-surgical planning and simulation of robotic surgery;
design and control of guiding systems for assistance of the surgeon gesture.
During the Summer school, these fields will be addressed by surgeons and researchers working in leading hospitals and labs. They will be completed by engineers who will give insight into practical integration problems. The courses are addressed to PhD students, post-docs and researchers already involved in the area or interested by the new challenges of such an emerging area interconnecting technology and surgery. Basic background in mechanical, computer science, control and electrical engineering is recommended.
The chameleon is able to catch a variety of different insects by putting its tongue over the respective prey and securely enclosing it. The FlexShapeGripper uses this principle to grip the widest range of objects in a form-fitting manner. Using its elastic silicone cap, it can even pick up several objects in a single gripping process and put them down together, without the need for a manual conversion.
The gripper consists of a double-acting cylinder, of which one chamber is filled with compressed air whilst the second one is permanently filled with water. This second chamber is fitted with elastic silicone moulding, which equates to the chameleon’s tongue. The volume of the two chambers is designed so that the deformation of the silicone part is compensated. The piston, which closely separates the two chambers from each other, is fastened with a thin rod on the inside of the silicone cap.
During the gripping procedure, a handling system guides the gripper across the object so that it touches the article with its silicone cap. The top pressurised chamber is then vented. The piston moves upwards by means of a spring support and the water-filled silicone part pulls itself inwards. Simultaneously, the handling system guides the gripper further across the object. In doing so, the silicone cap wraps itself around the object to be gripped, which can be of any shape, resulting in a tight form fit. The elastic silicone allows a precise adaptation to a wide range of different geometries. The high static friction of the material generates a strong holding force.
Once it has been put into operation, the gripper is able to do various tasks. This functional integration is a possible way of how systems and components can in future adapt to various products and scenarios themselves. The project also shows how Festo acquires new findings from nature for its core business of automation. But the aims of the Bionic Learning Network not only include learning from nature. Identifying good ideas and fostering them also plays a major part. The FlexShapeGripper came about through a cooperation with the the Oslo and Akershus University College of Applied Sciences and is an outstanding example for a close collaboration beyond company borders.
A l’heure où la modélisation numérique fait de tels progrès qu’il est devenu possible de faire “jouer” des acteurs décédés dans un film, Disney explore une piste qui sent bon l’animatronique à l’ancienne: des robots humanoïdes cascadeurs. Présenté dans une vidéo de démonstration diffusée par le site TechCrunch, le projet consiste plus exactement à créer des machines qui exécutent des figures de voltige, sauts de l’ange, salto et autre vrille, avec un réalisme confondant – sinon troublant, surtout pour les cascadeurs.
Oubliez, en effet, les mouvements saccadés et les postures rigides qui trahissent la machine. Walt Disney Imagineering, la division recherche et développement du studio, a conçu un robot capable non seulement de mimer un humain mais aussi de corriger sa gestuelle en plein vol, comme par exemple en se mettant en boule au moment de la descente pour atterrir dans des piles de cartons ou en effectuant un mouvement de balancier accroché à une liane avant de se propulser dans les airs en lançant les jambes en avant.
Appelé Stuntronics (contraction de stunt, cascade, et electronics, comme animatronics venait de animation et electronics), ce robot est équipé d’accéléromètres et de gyroscopes, des capteurs servant à mesurer accélération et position angulaire de la machine, ainsi que de télémètres laser mesurant les distances et d’une technologie de vision par ordinateur. Cette machine est en fait la continuité directe d’un autre projet appelé Stickman qui testait toutes ces techniques sur une ébauche de robot cascadeur consistant en trois barres articulés. A priori, le projet est destiné aux parcs à thèmes de Disney, où il est impossible par définition de s’en remettre à des personnages virtuels. Mais, au vu du résultat, il est tout à fait envisageable de les voir intégrer un prochain tournage de film d’action.
Dans le cadre d’un projet de recherche, Pollen Robotics et l’INCIA ont créé en 2017 Reachy, un bras robotique bio-inspiré reprenant la taille et les mobilité d’un bras adulte à 7 degrés de liberté. Reachy est destiné à être une plateforme de recherche et d’expérimentation permettant, par exemple, d’explorer de nouvelles interactions ou encore les problématiques liées à la commande dans des espaces de grandes dimensions. Open source, imprimé en 3D et modulaire, il est conçu pour pouvoir facilement s’adapter à différent setups expérimentaux !
Aujourd’hui Reachy est disponible dans une nouvelle version qui inclue:
une mécanique totalement revue permettant la réalisation de mouvements lisses et précis,
la cinématique inverse et directe,
la possibilité d’ajouter une main faite par OpenBionics,
A global team of computer scientists and engineers have developed an innovative technique for 3D shape reconstruction. This new approach to 3D shape acquisition is based on the well-known fluid displacement discovery by Archimedes and turns modeling surface reconstruction into a volumetric problem. Most notably, their method accurately reconstructs even hidden parts of an object that typical 3D laser scanners are not able to capture.
Traditional 3D shape acquisition or reconstruction methods are based on optical devices, most commonly, laser scanners and cameras that successfully sample the visible shape surface. But this common approach tends to be noisy and incomplete. Most devices can only scan what is visible to them but hidden parts of an object remain inaccessible to the scanner’s line of sight. For instance, a typical laser scanner cannot accurately capture the belly or underside of an elephant statue, which is hidden from its line of sight.
The team’s dip transform to reconstruct complex 3D shapes utilizes liquid, computing the volume of a 3D object versus its surface. By following this method, a more complete acquisition of an object, including hidden details, can be reconstructed in 3D. Liquid has no line of sight; it can penetrate cavities and hidden parts, and it treats transparent and glossy materials identically to opaque materials, thus bypassing the visibility and optical limitations of optical and laser-based scanning devices.
The research, “Dip Transform for 3D Shape Reconstruction“, is authored by a team from Tel-Aviv University, Shandong University, Ben-Gurion University and University of British Columbia. They implemented a low-cost 3D dipping apparatus: objects in the water tank were dipped via a robotic arm. By dipping an object in the liquid along an axis, they were able to measure the displacement of the liquid volume and form that into a series of thin volume slices of the shape. By repeatedly dipping the object in the water at various angles, the researchers were able to capture the geometry of the given object, including the parts that would have normally been hidden by a laser or optical 3D scanner.
The team’s dip transform technique is related to computed tomography, an imaging method that uses optical systems for accurate scanning or to produce detailed pictures. However, the challenge with this more traditional method is that tomography-based devices are bulky and expensive and can only be used in a safe, customized environment. The team’s approach is both safe and inexpensive, and a much more appealing alternative for generating a complete shape at a low-computational cost using an innovative data collection method.
In the study, they demonstrated the new technique on 3D shapes with a range of complexity, including a hand balled up into a fist, a mother-child hugging and a DNA double helix. Their results show that the dip reconstructions are nearly as accurate as the original 3D model, paving the way to a new world of non-optical 3D shape acquisition techniques.
Le Jellyfishbot est un petit robot de dépollution téléopéré. Il permet de ramasser les macrodéchets ainsi que les hydrocarbures (pollutions de surface).