R1, il primo robot per le famiglie

fonte: questo articolo de La Repubblica

R1“Sarà un robot rassicurante e piacevole”. Con queste parole, un anno e mezzo fa, Giorgio Metta annunciava a Repubblica l’inizio di un grande progetto: portare i robot umanoidi nelle case degli italiani. Oggi, sotto il suo coordinamento, quel sogno ha un nome: R1 – your personal humanoid è il primo robot sviluppato a basso costo, concepito per raggiungere il mercato di massa. Un team di 32 ricercatori e designer dell’Istituto Italiano di Tecnologia (IIT), polo d’eccellenza in Italia e nel mondo, sono riusciti nell’intento di creare un umanoide al costo di una tv di ultima generazione. E per completare l’obiettivo manca solo un passaggio: la produzione in serie. Ma non ci vorrà molto, al massimo 18 mesi e lo vedremo scorrazzare in giro per il mondo.

Un tuttofare con rotelle. R1 sarà un amico fidato che ci aiuterà nelle faccende domestiche o nel lavoro da ufficio. Lo vedremo in hotel dietro il banco della reception o in ospedale in aiuto di infermiere e caposala nella gestione di cartelle e dati. All’inizio gli dovremo insegnare tutto: dalla planimetria dell’ambiente alla collocazione degli oggetti. Ma in poco tempo sarà in grado di muoversi in autonomia, riconoscendo ambienti, volti e voci e compiendo azioni al posto nostro. Come fare un caffè o prendere il telecomando al posto nostro, senza farci alzare dal divano.
R1 body“Noi ci siamo spremuti le meningi per abbattere i costi mantenendo alta la qualità. – spiega Metta – Abbiamo cercato di rendere il tutto meno dispendioso utilizzando materiali economici, come polimeri e plastiche, che richiedono processi produttivi meno costosi rispetto a quelli tradizionali”. Il prezzo finale dipenderà da quanti robot verranno costruiti. “Per i primi 100 prototipi abbiamo individuato un target di prezzo che si aggira sui 25mila euro. Superata questa soglia, il prezzo inizierà a scendere e continuerà a calare man mano che diventerà un prodotto di consumo. La fascia, più o meno finale, di prezzo sarà di 3mila euro, quanto il costo di un moderno televisore al plasma”.

I precedenti. R1 è il risultato di un lungo percorso di sperimentazione e ricerca che raccoglie la conoscenza acquisita dai ricercatori con la creazione di altri robot, in particolare di iCub: l’umanoide costruito per gli studi sull’intelligenza artificiale, oggi presente in tutto il mondo con 30 prototipi. Rispetto a lui e agli altri umanoidi in circolazione, però, le differenze sono tante: “iCub è un prodotto di ricerca in cui il prezzo non era importante. R1 invece è un tentativo di approcciare il mercato di massa in cui il prezzo diventa questione fondamentale”, spiega Giorgio Metta.

R1 armE anche con il famoso robot umanoide Pepper, che da poco è stato adottato sulle navi da crociera, il confronto non regge perché R1 ha il dono della presa. In Pepper le mani servono solo per indicare o fare dei gesti ma non per compiere azioni. Per realizzare R1, invece, i ricercatori si sono concentrati proprio sulla possibilità di farlo interagire con l’esterno attraverso l’uso degli arti superiori, donandogli la capacità di afferrare oggetti, aprire cassetti o porte. Un valore aggiuntivo rispetto alle alternative già esistenti sul mercato, che gli assicurano un posto d’onore tra i tuttofare di casa. Le mani e gli avambracci di R1 sono rivestiti di una pelle artificiale, con sensori che conferiscono al robot il senso del tatto, permettendogli di ‘sentire’ l’interazione con gli oggetti che manipola. Il disegno delle mani è stato semplificato rispetto a quello di iCub per garantire robustezza e costi contenuti, pur consentendo l’esecuzione di semplici operazioni domestiche. Hanno la forma di due guanti a manopola e il polso è sferico, aspetti che gli permettono di sollevare pesi fino a 1,5 kg e chiudere completamente la presa attorno a ciò che afferra, specialmente oggetti cilindrici come bicchieri e bottiglie. Ma non è tutto.

R1 faceAnatomia di un robot. Dalla testa alle rotelle, R1 è un concentrato di tecnologia avanzata. Il volto è uno schermo LED a colori su cui compaiono delle espressioni stilizzate: pochi, semplici tratti per un modo semplice e veloce di comunicare con l’uomo. All’interno, invece, lo schermo ospita i sensori per la visione, due telecamere e uno scanner 3D, quelli per l’equilibrio e per la generazione e percezione del suono. Il corpo è allungabile e ‘snodabile’, con il busto che si estende fino a 140 centimetri e il torso che si torce anche lateralmente. Stesso discorso per gli arti meccanici, che possono guadagnare fino a 13 cm. Nella ‘pancia’, invece, trovano posto tre computer che governano le capacità del robot, dal calcolo al movimento della testa, sino al controllo di tutti i sensori. Una scheda wireless permette al robot di collegarsi alla rete internet, ricavando informazioni utili all’interazione con l’uomo e gli aggiornamenti del software.

La memoria di una vita.
L’idea è che queste macchine diventino il centro di tutta la nostra comunicazione digitale: mantengano l’agenda, ci aiutino a ottimizzare la pianificazione, diventino la nostra interfaccia con altri strumenti di uso quotidiano. “Man mano che il robot starà con noi, inizierà ad avere memoria di tutto ciò che facciamo e che abbiamo fatto insieme. Magari, un giorno, avrà memoria di tutta la nostra vita e gli potrò chiedere di accedere a ricordi, tra foto e video”, conclude Metta. E a questo punto è il caso di dirlo, la rivoluzione sarà entrata in casa.

Advertisements

Osteoarthritis: some hints

sources: Orthopaedic Research Society and PR Newswire

According to WikipediaOsteoarthritis (OA) is a type of joint disease that results from breakdown of joint cartilage and underlying bone. The most common symptoms are joint pain and stiffness. Initially, symptoms may occur only following exercise, but over time may become constant. Other symptoms may include joint swelling, decreased range of motion, and when the back is affected weakness or numbness of the arms and legs. The most commonly involved joints are those near the ends of the fingers, at the base of the thumb, neck, lower back, knee, and hips. Joints on one side of the body are often more affected than those on the other. Usually the symptoms come on over years. It can affect work and normal daily activities. Unlike other types of arthritis, only the joints are typically affected.

OAOA affects the entire joint, progressively destroying the articular cartilage, including damage to the bone. Patients suffering from OA have decreased mobility as the disease progresses, eventually requiring a joint replacement since cartilage does not heal or regenerate. According to a 2010 Cleveland Clinic study, OA is the most prevalent form of arthritis in the United States, affecting more than 70% of adults between 55 and 78 years of age (that is, millions of people).

My father was in major pain from his osteoarthritis,” explains Riccardo Gottardi, a scientist at the University of Pittsburgh supported by a Ri.MED Foundation fellowship.  “He was in so much pain that he had to undergo a double hip replacement followed by a knee replacement soon afterwards. I could see the debilitating and disabling effects the disease had on him, as he was restricted in his mobility and never fully recovered even after surgery. This was very different from the person that I knew, who had always been active and never shied away from long hours of work in his life – he just could not do it anymore.

For scientists like Gottardi, a key obstacle in understanding the mechanisms of osteoarthritis and finding drugs that could heal cartilage, is that cartilage does not exist separately from the rest of the body. Cartilage interacts with other tissues of the joint, especially with bone. Bone and cartilage strongly influence each other and this needs to be taken into account when developing new drugs and therapies.

cartilageGottardi and a team of researchers at the Center for Cellular and Molecular Engineering, led by Dr. Rocky Tuan, have developed a new generation system to produce engineered cartilage, bone and vasculature, organized in the same manner as they are found in the human joint.  This system is able to produce a high number of identical composite tissues starting from human cells. The team will use this system to study the interactions of cartilage with vascularized bone to identify potential treatments for osteoarthritis. The team’s research has two main objectives: to help understand how cartilage interacts with the other joint tissues, especially bone; and to help develop new effective treatments that could stop or even reverse the disease.  Their patent pending system is the first of its kind, and offers a number of advantages including the use of human cells that replicate native tissues. This system more closely matches the effects on humans than standard animal testing could achieve.

The team of scientists is further developing their system to produce tissues composed of more and different cell types that could better replicate the human joint. They have also started a number of collaborations with other research groups and companies that are interested in using the system to investigate other joint diseases and to test their product. “After seeing what my father went through,” says Gottardi, “I decided that I did not want to just watch by working on diagnostics, but rather, I wanted to be able to do something about osteoarthritis and contribute to the improvement of current treatment options.

Gottardi’s work was recently presented at the Annual Meeting of the Orthopaedic Research Society. Founded in 1954, the Orthopaedic Research Society strives to be the world’s leading forum for the dissemination of new musculoskeletal research findings.

Formation à la chirurgie robotique

source: ce site internet

Academie-nationale-chirurgie-STAN-Institute

Saviez-vous qu’il n’y a aucune obligation légale à se former à la chirurgie robotique ? Autrement dit, n’importe quel chirurgien peut s’assoir à une console de robot da Vinci et opérer. Il n’y a aucune obligation de formation. Prendriez-vous un avion dont le pilote n’a pas de licence de vol ?

Le 13 novembre 2015, un panel d’experts de la chirurgie robotique s’est réuni au sein de l’Académie Nationale de Chirurgie (ANC) pour débattre sur la formation en chirurgie robotique. Les conclusions principales mettent en avant des besoins fondamentaux :

  • Il faut se caler sur le protocole de formation à la chirurgie robotique élaboré par les équipes de Nancy.
  • Il est impératif de prévoir l’arrivée de nouveaux robots.
  • Il n’est pas utile de multiplier les centres de formation, il faut se contenter de quelques centres experts de formation bien équipés en matériel et en personnel et développer les registres.

Les principes conducteurs de la chirurgie moderne assistée par ordinateur, et par conséquent robotique doivent être les suivants :

  • Savoir opérer
  • Connaître les machines utilisées
  • Être convaincu de la nécessité du partenariat avec les industriels
  • Conserver son éthique et son indépendance en évitant tout conflit d’intérêts
  • Justifier scientifiquement les évolutions thérapeutiques choisies pour convaincre les décideurs économiques et défendre les chirurgiens mis en cause par l’intermédiaire de la HAS

La formation en chirurgie robotique assurée actuellement par les industriels n’a pas de base légale. Celui-ci a simplement pour obligation, comme tout fabricant de matériel, d’expliquer son fonctionnement à un acquéreur. Cette formation, trop courte si l’on se réfère aux résultats publiés, ne comporte aucune évaluation des capacités de ces chirurgiens à utiliser le robot. Il est du rôle des sociétés savantes et des universités de contrôler cet enseignement et l’évaluation des équipes utilisatrices de ces nouvelles technologies, en partenariat avec les industriels. La formation en chirurgie robotique peut être assurée soit par des écoles publiques, soit par des écoles privées, en étant conscient de l’importance du coût du matériel nécessaire. Il apparait que ce coût ne peut être assumé par les seules finances des universités et que des partenariats sont nécessaires avec des entreprises privées, pour les écoles publiques.

La chirurgie robotique est mise en œuvre par des chirurgiens et leurs équipes et leur formation comporte 5 volets :

  1. La formation chirurgicale de base relève de toutes les écoles de chirurgie.
  2. La formation élémentaire à l’usage d’un “robot” est commune à toutes les spécialités utilisatrices des robots. Elle est validée par un document attestant de la participation du chirurgien à la formation élémentaire, apprentissage de la machine, des gestes avec des mises en application sur simulateur et sur robot en “dry” et “wet lab”. Cette étape de la formation doit être conclue par une évaluation.
  3. La chirurgie robotique est caractérisée par la distance physique établie entre le chirurgien et le champ opératoire, ainsi que par la disparition de la communication visuelle avec le reste de l’équipe. Une formation des autres membres de l’équipe chirurgicale (team training) est par conséquent indispensable.
  4. La formation clinique spécifique à chaque spécialité se fera dans des centres équipés de “robots” et disposant de “proctors” (“Advanced Courses”).
  5. La chirurgie est un apprentissage permanent qui nécessite un maintien de compétences tout au long de sa pratique. La question de la recertification telle qu’elle est imposée aux pilotes d’avion après une période d’inactivité ou lorsqu’ils n’ont pas une pratique régulière n’existe pas actuellement en Médecine. Il est vraisemblable qu’à l’avenir le développement des simulateurs permettra aux chirurgiens soumis à des situations similaires de rafraîchir ou de maintenir leur technicité.

IEEE BioRob 2014 ( + mini news in italiano)

biorob145th edition of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2014), the biannual conference on theoretical and experimental issues in the fields of robotics and mechatronics applied to medicine and biology. This year the conference will be held in São Paulo on August 12-15, 2014. The conference theme of this edition is “Biomedical Robotics and Biomechatronics Technology for a World without Borders“. The confluence of all stakeholders engineers, physicians, industry, government, patients, and caregivers will be unique but in line with United Nations 2012 unanimous decision to make healthcare and rehabilitation a human right.

BioRob covers both theoretical and experimental challenges posed by the application of robotics and mechatronics in medicine and biology. The primary focus of Biorobotics is to analyze biological systems from a “biomechatronic” point of view, trying to understand the scientific and engineering principles underlying their extraordinary performance. This profound understanding of how biological systems work, behave and interact can be used for two main objectives: to guide the design and fabrication of novel, high performance bio-inspired machines and systems for many different applications; and to develop novel nano, micro-, macro- devices that can act upon, substitute parts of, and assist human beings in prevention, diagnosis, surgery, prosthetics, rehabilitation and personal assistance. The technical program of IEEE BioRob2014 will consist of invited talks, special sessions, posters, and paper presentations. Papers can cover areas of Biorobotics and Biomechatronics including :

  • Technology for assisted surgery and diagnosis
  • Biomechatronic and human-centered design
  • Micro/nano technologies in medicine and biologylogo
  • Wearable assistive and augmenting devices
  • Biological systems modeling
  • Biologically-inspired systems
  • Rehabilitation and assistive robotics
  • Human-machine interaction
  • Neuro-robotics
  • Prosthetic devices
  • Locomotion and manipulation in robots and biological systems
  • Technology Assessment, Ethical and Social Implications of Biorobotics and Biomechatronics

Important dates :

  • February 28, 2014 – Submission of paper & workshop proposals
  • May 2, 2014 – Paper acceptance notification
  • May 26, 2014 – Final paper submission

***

TGR_liguriae per dare un’occhiata al mondo della robotica a Genova, clicca qui per vedere un breve servizio del TG Regione Liguria del 12 febbraio 2014 (dal minuto 16:40 in poi)

Knee Surgery… there’s an app for that!

app

Nowadays “there’s an app for that” could be the 11th Commandment … there is a bunch of apps for everything, even for the most stupid daily activities.

vks1A friend of mine told me to have a look at this one: Virtual Knee Surgery. It is a very realistic game that follows all the basic steps of a Total Knee Replacement surgery. The user is invited to interact with the surgeon in order to perform the necessary operations.

After living this experience in a real operating room, personally I’ve found this app a really nice and clear explanation 🙂 If you want to spend ten minutes to learn the basics of TKR, I definitely can say it’s worth it!

vks2

CORTEX 3D-printed cast

source: this website

cortex13D-printed casts for fractured bones could replace the usual bulky, itchy and smelly plaster or fibreglass ones in this conceptual project by Victoria University of Wellington graduate Jake Evill. The prototype Cortex cast is lightweight, ventilated, washable and thin enough to fit under a shirt sleeve.

A patient would have the bones x-rayed and the outside of the limb 3D-scanned. Computer software would then determine the optimum bespoke shape, with denser support focussed around the fracture itself. The polyamide pieces would be printed on-site and clip into place with fastenings that can’t be undone until the healing process is complete, when they would be taken off with tools at the hospital as normal. Unlike current casts, the materials could then be recycled.

cortex2

Jake has just graduated from the Architecture and Design faculty at Victoria University of Wellington, with a Major in Media Design and a Minor in Industrial Design. After working with the orthopaedic department of his university on the project, he is now looking for backing to develop the idea further. “At the moment, 3D printing of the cast takes around three hours whereas a plaster cast is three to nine minutes, but requires 24-72 hours to be fully set,” says the designer. “With the improvement of 3D printing, we could see a big reduction in the time it takes to print in the future.”

cortex4After many centuries of splints and cumbersome plaster casts that have been the itchy and smelly bane of millions of children, adults and the aged alike, the world over, we at last bring fracture support into the twenty-first century.

The Cortex exoskeletal cast provides a highly technical and trauma-zone-localised support system that is fully ventilated, super light, shower friendly, hygienic, recyclable and even stylish!

cortex_end

other sources: one and two

how do our eyes move ?

Imagine you’re watching a tennis match. Or better, imagine you’re the chair umpire. You must focus on the yellow ball, decide whether or not it is in and continuously follow its trajectory. At the end of the match, your eyes will “feel tired”. That’s because you made them work a lot while following the small yellow moving target. Which kind of movements do our eyes perform while tracking a moving object?

us open 2007

So, the situation is that the tennis ball moves quickly from one side of the court to the other and you want to continuously look at it. You have two possibilities: either you follow the ball by rigidly turning your whole body (or just your head) without changing the direction of your gaze, or you move just your eyes by performing really quick changes of direction. In the first case, you’d look quite weird and at the end of the match you’ll be completely sweat; in the second case, which is the solution we normally adopt in all similar daily life activities,  you’d properly employ your extraocular muscles in order to optimize the control of your eye movements.

extraocular musclesWhen our eyes quickly jump from a position to another, they are performing the so-called saccades. To have an idea, pick the triangle and the star on the left (in the middle, the extraocular muscles are shown!) and jump with your eyes repeatedly from one to the other, as quick as possible: you’re just performing saccadic eye movements (video at the end of this post). Their maximum angular speed is proportional to their length (the distance they have to cover) and can attain up to 1000 deg/sec. A saccade takes 200 milliseconds to initiate and then lasts from 20 to 200 ms. This makes it the fastest movement produced by the human body, even faster than blinking (300-400 ms). Thanks to specific neuronal mechanisms connected to our eye muscles, time-consuming circuits are bypassed and everything works quite automatically (you don’t actually have to think about how to follow a moving object with your eyes, you just do that). All such amazing neuronal mechanisms are so natural and, in a sense, involuntary that saccades appear even in the opposite case, that is for fixational eye movements.

Tennis-Ball-LineYou, the chair umpire, are not sure whether the ball was in or out. Thus, you take the slow motion of the match and you stop the video on the exact instant when the ball touched the ground. Now you start staring at the still yellow target, which is still. After some seconds of prolonged visual fixation, some small, jerk-like, involuntary eye movements, similar to miniature versions of saccades, will occurr. They are called microsaccades and participate to the maintenance of visibility, even if their precise role in visual perception is is still largely unresolved.

Now imagine you’re watching the dvd of your favourite tennis match and you accidentally push the button that slows the video down . Instead of the real velocity, you’re watching the match at 0.2x speed. The ball has a really slow motion and you try to follow it with your eyes. You can perform smooth movements of your pupils, something that is completely different from the saccadic jumps you were obliged to during the match! This voluntary gaze shift to closely follow a moving object is allowed by smooth pursuit eye movements, which are asymmetric: for example, most humans and primates tend to be better at horizontal than vertical smooth pursuit.

Saccades and pursuits are just two of the main types of eye movements (you can find a complete list here).

sources: i, ii, iii, iv