Surgeon Anthony Atala demonstrates an early-stage experiment that could someday solve the organ-donor problem: a 3D printer that uses living cells to output a transplantable kidney.
official TED Conference – filmed March 2011
There’s actually a major health crisis today in terms of the shortage of organs. The fact is that we’re living longer. Medicine has done a much better job of making us live longer, and the problem is, as we age, our organs tend to fail more, and so currently there are not enough organs to go around. In fact, in the last 10 years, the number of patients requiring an organ has doubled, while in the same time, the actual number of transplants has barely gone up. So this is now a public health crisis. So that’s where this field comes in that we call the field of regenerative medicine. It really involves many different areas. You can use, actually, scaffolds, biomaterials — they’re like the piece of your blouse or your shirt — but specific materials you can actually implant in patients and they will do well and help you regenerate. Or we can use cells alone, either your very own cells or different stem cell populations. Or we can use both. We can use, actually, biomaterials and the cells together. And that’s where the field is today.
Our biggest challenge are the solid organs. I don’t know if you realize this, but 90 percent of the patients on the transplant list are actually waiting for a kidney. Patients are dying every day because we don’t have enough of those organs to go around. So this is more challenging — large organ, vascular, a lot of blood vessel supply, a lot of cells present. So the strategy here is — this is actually a CT scan, an X-ray — and we go layer by layer, using computerized morphometric imaging analysis and 3D reconstruction to get right down to those patient’s own kidneys. We then are able to actually image those, do 360 degree rotation to analyze the kidney in its full volumetric characteristics, and we then are able to actually take this information and then scan this in a printing computerized form. So we go layer by layer through the organ, analyzing each layer as we go through the organ, and we then are able to send that information through the computer and actually design the organ for the patient.
click here for the full transcript of the video