gli occhi un po’ a mandorla della “crisi” globale delle materie prime

full credits: DATAROOM del Corriere della Sera

Fabbriche di elettrodomestici, mobili, alimentari, automobili, a singhiozzo si stanno fermando tutte. Proprio ora che riparte la domanda. La questione è che pressoché tutte le materie prime sono diventate introvabili e costosissime. Gli inglesi la chiamano everything bubble: la bolla sui prezzi di qualunque cosa. Per un Paese trasformatore come l’Italia, che deve importare quasi tutto, sta diventando un problema serio. Quanto sta accadendo è il risultato di tre fattori che si sommano: reali, finanziari e logistici.

Partiamo da quelli reali. Nei primi mesi della pandemia i valori dei prezzi delle materie prime sono crollati del 20-30%. La Cina, che ha un’economia pianificata, ne ha subito approfittato per fare scorte, avvantaggiata anche dal fatto di essere ripartita con quattro mesi di anticipo. Ma subito dopo i prezzi hanno ricominciato a salire, e ora sono alle stelle, perché tutti i Paesi sono ripartiti di scatto, con i magazzini di ogni continente vuoti per colpa dell’organizzazione just in time (le imprese si sono abituate, per essere più efficienti, a non accumulare scorte) e, quindi, adesso vanno riempiti da zero. Poi ci sono cause che hanno a che fare con i mercati finanziari. Le materie prime sono diventate un investimento interessante perché sono prezzate in dollari, moneta debole in questo momento, quindi sono convenienti per chi le acquista in euro o altre valute. Inoltre: investire in titoli di Stato dà rendimenti bassissimi, quindi tanto vale mettere soldi in materie prime e sui titoli derivati a esse legati. A tutto questo bisogna aggiungere gli aspetti logistici come l’aumento a dismisura dei costi di trasporto. Il Dry Baltic Index, indice che sintetizza gli oneri di nolo marittimo per prodotti secchi e sfusi (minerali, cereali, eccetera), ha registrato nell’ultimo anno un +605%. Tra le cause anche l’introduzione del nuovo regolamento approvato dall’Organizzazione marittima internazionale che impone a tutte le navi di abbassare la quota di zolfo nell’olio combustibile: dal 3,5% (massa per massa) dal gennaio 2020 si passati allo 0,5%. Questo cambiamento ha comportato la rottamazione di parte delle navi e revamping di altre, anche per le navi portacontainer e portarinfuse che trasportano merci dalle Americhe, dall’Africa, dall’Asia e dall’Australia, e il costo si è scaricato sui prezzi.

Ci sono alcune materie prime necessarie in quantità mai utilizzate finora, perché sono indispensabili alle due rivoluzioni in corso nel sistema produttivo: la transizione green e quella digitale. Parliamo di rame, litio, silicio, cobalto, terre rare, nickel, stagno, zinco. I più lungimiranti sono stati i cinesi. A casa loro sono grandi estrattori di rame, litio, terre rare. E quello che gli manca se lo vanno prendere nei Paesi produttori: il nichel nelle Filippine e in Indonesia, in Congo possiedono le principali miniere di cobalto. Minerali che poi trasformano direttamente nella madre patria. Secondo Benchmark Mineral Intelligence, società di analisi britannica, l’80% dei materiali grezzi necessari per la costruzione delle batterie agli ioni di litio proviene da aziende cinesi. Per l’approvvigionamento di terre rare dipendiamo dalla Cina per il 98%, idem per il borato dalla Turchia, dal Sud Africa per il 71% del fabbisogno di platino. Secondo le stime della Commissione, per le batterie dei veicoli elettrici e lo stoccaggio dell’energia nel 2030 l’Ue avrà bisogno di un approvvigionamento di litio fino a 18 volte superiore a quello attuale, e 5 volte di cobalto. Quantità che triplicheranno nel 2050, mentre decuplicherà la domanda di terre rare utilizzate nei magneti permanenti (veicoli elettrici, tecnologie digitali, generatori eolici).

Con vent’anni di ritardo rispetto alla Cina, lo scorso ottobre l’Unione Europea ha costituito l’Alleanza per le materie prime. La strategia è quella di diventare più autonomi puntando su tre obiettivi:

1: favorire l’attività estrattiva dei metalli presenti sul territorio europeo utilizzando tecnologie avanzate. La domanda di litio, per esempio, può essere soddisfatta internamente per l’80% entro il 2025. Oggi i metalli strategici estratti in Europa, come il litio, vengono poi trasformati principalmente in Cina. Il processo di lavorazione andrà invece sviluppato rapidamente a casa nostra. Sono stati creati sei centri d’innovazione, di cui uno a Roma, con lo scopo di implementare il settore creando partnership tra imprese e tra imprese e università. In Italia abbiamo un po’ di cobalto in Sardegna e a Punta Corna, in Piemonte, dove si trova anche il nichel; mentre a Gorco, in provincia di Bergamo, c’è lo zinco. Certo, si tratta di attività invasive. Ma andrà deciso una volta per tutte se lasciarle nelle mani di Paesi che, oltre a renderci dipendenti economicamente ed esposti ai ricatti dei prezzi, hanno regole meno rigorose delle nostre e utilizzano tecnologie più inquinanti.

2: potenziare l’attività di riciclo dei metalli pregiati. Abbiamo dimostrato di saperlo fare con carta e alluminio, ma non con i rifiuti elettronici, a partire dalle batterie dei cellulari. Per quel che riguarda il riciclo delle batterie, mandiamo il grosso in Cina, che ormai domina il mercato mondiale, e la paghiamo svolgere questo tipo di attività. Poi dalla Cina compriamo le batterie nuove e buonanotte. Un minerale strategico è il cobalto. Dai dati dello European Institute of Innovation Tecnology Rowmaterials: l’Ue paga per importarne 40.000 tonnellate ogni anno, la metà finiscono in prodotti che restano all’interno della Ue, dove il riciclo a fine vita però è minimo, quando invece una percentuale che può sfiorare il 50% è recuperabile. Inoltre andiamo a buttare migliaia di tonnellate di computer e telefonini usati nelle discariche di casa nostra e in Africa. Un comportamento irresponsabile che, da un lato, provoca un inquinamento gigantesco e, dall’altro, deturpa l’ambiente perché rende necessario estrarre nuovo cobalto. Per questo si dovrà puntare su filiere di raccolta, stoccaggio e riciclo, che oggi mancano completamente.

3: costruire una politica estera e industriale comune per ottenere le concessioni dei minerali che non abbiamo. Sicomines, un consorzio di società statali cinesi, nel 2008 ha firmato un accordo con il Congo per diritti di estrazione di rame e cobalto fino al 2033, per un valore stimato in 84 miliardi di dollari. In cambio si è impegnata a investire 6 miliardi di dollari nelle infrastrutture del Paese e circa 3 miliardi nel settore minerario. Da anni in quelle miniere è scandalosamente sfruttato il lavoro dei bambini, provocando l’indignazione di mezzo mondo. Offrire condizioni migliori non è solo una necessità. È un dovere.

the birthday paradox

full credits: Wikipedia

In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. In a group of 23 people, the probability of a shared birthday exceeds 50%, while a group of 70 has a 99.9% chance of a shared birthday. (By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367, since there are only 366 possible birthdays, including February 29)

These conclusions are based on the assumption that each day of the year is equally probable for a birthday. Actual birth records show that different numbers of people are born on different days. In this case, it can be shown that the number of people required to reach the 50% threshold is 23 or fewer.

The birthday problem is a veridical paradox: a proposition that at first appears counterintuitive, but is in fact true. While it may seem surprising that only 23 individuals are required to reach a 50% probability of a shared birthday, this result is made more intuitive by considering that the comparisons of birthdays will be made between every possible pair of individuals. With 23 individuals, there are (23 × 22) / 2 = 253 pairs to consider, which is well over half the number of days in a year (182.5 or 183).

Real-world applications for the birthday problem include a cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of finding a collision for a hash function, as well as calculating the approximate risk of a hash collision existing within the hashes of a given size of population.

The history of the problem is obscure. The result has been attributed to Harold Davenport; however, a version of what is considered today to be the birthday problem was proposed earlier by Richard von Mises.

AcuSurgical – ready, set, go!

credits: AcuSurgical official website

AcuSurgical, a startup developing a robotic assistant for vitreo-retinal surgery, announces a Series A funding of around 6€ million euros. The round was led by institutional investors Merieux Partners and Supernova Invest, with participations from IRDI-Soridec and Sofimac Innovation. The round aims to finance upcoming clinical trials and CE mark certification.

AcuSurgical designs and builds a robotic surgical assistant dedicated to the treatment of retinal diseases such as age-related macular degeneration (AMD) affecting over 300 million patients worldwide including one in three Europeans aged over 70. AcuSurgical’s mission is to improve the precision and safety of current retinal procedures, augmenting the surgeons abilities and thus enabling new retinal surgeries. The aim is to treat the significative percentage of patients who today suffer from limited treatment options.

The innovative and unique robot was designed in collaboration with the LIRMM robotics laboratory, a joint research unit of the University of Montpellier and the CNRS (France) and vitreo-retinal surgeons at the Jean Monnet University in Saint-Etienne (France). The company recently signed a partnership with the Adolphe de Rothschild Foundation based in Paris.

“Our ambition is to enable innovative treatments for retinal disease that will open new perspectives for the numerous patients who today are impacted by these debilitating retinal conditions and who currently have limited options for treatment. We’re proud of the confidence afforded to us by this strong group of investors. Their support will allow us to grow the team and reach key milestones towards certification and commercialisation of our innovative surgical robotics platform” says Christoph Spuhler, CEO and co-founder of AcuSurgical.


AcuSurgical was co-founded in 2020 by Christoph Spuhler, robotics professors Philippe Poignet and Yassine Haddab and vitreo-retinal surgeons and professors Philippe Gain and Gilles Thuret. The team is comprised of experts with significant previous experience in surgical robotics and ophthalmic medical devices. The company grew out of a collaboration between the co-founders and the LIRMM robotics laboratory accompanied by seed funding from the AxLR incubator. SATT AxLR specializes in the maturation and commercialization of innovative projects resulting from academic research. The company has been incubated at the BIC since 2018, and has received i-site MUSE support.

Leap Motion + VR systems

old but gold – full credits: Futurism.com

Anyone with an Oculus or Vive VR system can better navigate the virtual world with their hands. Leap Motion shows off the tech improvements to Orion in a trio of new demos: Cat Explorer, Particles, and Paint.

Cat Explorer lets you inspect the interior of a disturbingly forlorn-looking feline in VR. You can run your fingers over its exposed ribs, remove the animal’s skin to look at its muscle structure, or even deconstruct the kitty, poking and prodding each individual bone and organ.

In the Particles demo, you can play around with tiny spheres, adjusting their reactions to one another to explore different concepts in physics.

The Paint demo is pretty much what you’d expect — it lets you use your hands to create a three-dimensional composition. Just don’t get too upset if your creation looks more like something that would come from Microsoft Paint than the colorful, well-rendered animals and plants featured in the demo video.

More info on the official website!

Bioprinting for Regenerative Medicine

credits: wscs.com

following up on my previous post (more than six years ago!)

Anthony Atala is a pediatric surgeon, urologist and directs the Wake Forest Institute for Regenerative Medicine (WFIRM) in North Carolina. Together with 400 colleagues and in a work that spans more than three decades, he has successfully implanted in human patients a variety of tissues regenerated from the patient’s own cells. Dr. Atala talked to 3DPrint.com about ways to translate the science of regenerative medicine into clinical therapy and the importance of adopting new technologies, as well as some of the challenges.

“Back in the 90’s we created by hand, even without using the printer, bladders, skin, cartilage, urethra, muscle and vaginal organs, and later implanted them successfully in patients. The printer automated what we were already doing and scaled it up making some of the processes easier. Still, the technology has its own challenges. With hand made constructs you have more control as you are creating the tissue, but with the printed structure everything has to be built in before it is created, so that you have to have the whole plan and information ready to go once you push that ‘start’ button”.

The WFIRM is working to grow tissues and organs and develop healing cell therapies for more than 40 different areas of the body, from kidney and trachea to cartilage and skin. Dr. Atala and his team of scientists have been first in the world to implant lab-grown tissues and organs into patients. Starting in 1990 with most of their research and implanting the first structures at the end of that decade, using a 3D printer to build a synthetic scaffold of a human bladder, which they then coated with cells taken from their patients. New research at WFIRM shows innovative wound healing through the use of a bedside 3D skin printer.

“Today, we continue to develop replacement tissues and organs, and are also working to speed up the availability of these treatments to patients. The ultimate goal is to create tissues for patients. Part of that is taking a very small piece of the patients tissue from the organ that we are trying to reconstruct, like muscle or blood vessels, only to expand the cells outside of the body and then use them to create the organ or structure along with a scaffold or a hydrogel which is the glue that holds the cells together. We have been doing this for quite some time with patients and 16 years ago we realized that we needed to scale up the technology and automate it to work with thousands of patients at a time, so we started thinking about 3D printers, and began using the typical desktop inkjet printer which was modified in-house to print cells into a 3D shape”.

The living cells were placed in the wells of the ink cartridge and the printer was programmed to print them in a certain order. The printer is now part of the permanent collection of the National Museum of Health and Medicine. According to Dr. Atala, all the printers at the WFIRM continue to be built in-house specifically to create tissues, so that they are highly specialized and able to create cells without damaging the tissue as it gets printed. Inside the institute, more than 400 scientists in the fields of biomedical and chemical engineering, cell and molecular biology, biochemistry, pharmacology, physiology, materials science, nanotechnology, genomics, proteomics, surgery and medicine work to try to develop some of the most advanced functional organs for their patients. At WFRIM they are focusing on personalized medicine, whereby the scientists use the sample tissue from the patient they are treating, grow it and implant it back to avoid rejection. Dr. Atala claims that “these technologies get tested extensively before they are implanted into a patient”, and that “it could take years or even decades of research and investigation before going from the experimental phase to the actual trial in humans. Our goal for the coming decade is to keep implanting tissues in patients, however, the most important thing for us is that we temper peoples expectations because these tissues come out very slowly and they come out one at a time, so we don’t give false hopes and provide the technology to patients who really need them. Working with over 40 different tissues and organs, means that about 10 applications of this technologies are already in patients. The research we have done helps us categorize tissues under order of complexity, so we know that flat structures (like skin) are the least complex; tubular structures (such as blood vessels) have the second level of complexity, and hollow non-tubular organs, including the bladder or stomach, have the third level of complexity because the architecture of the cells are manifold. Finally, the most complex organs are solid ones, like the heart, the liver and kidneys, which require more cells per centimeter”.

the Iceberg of ignorance

credits: Frank Zijlstra

Consultant Sidney Yoshida produced this study called ‘The Iceberg of Ignorance‘ in 1989. Yoshida revealed what he saw in the work and leadership habits of Japanese car manufacturer, Calsonic.

How much do we know, what is going on within our organisation? Is it even possible to know all? But if we do not know all, how do we know if we are resolving the right challenges? If executives are continuously impatient and do not ask how they can help, will it really help to resolve Problems in a quality way?

Can engagement within an organization help to resolve challenges on every layer of the organisation? But what about the silo’s within the organization? Fixing a problem in one part of the organisation, but creating an other somewhere else?

Technology opportunities are happening faster and faster, more and more we have to be ready to make changes and adapt. How are you and your teams adopting change?

Titanic, l'iceberg sarebbe stato in 'agguato' da 100mila anni

creativity is free and 3D-printable

source: https://i.materialise.com/en

In line with their mission to create a better and healthier world, Materialise designed a hands-free 3D-printed door opener. This is intended to help minimize the unavoidable daily task of opening and closing doors and ultimately decrease the spread of germs like the coronavirus. 

The design file is free for anyone to download on Materialise official website, making it possible to 3D print locally at factories around the world. On the Materialise online shop it is also possible to order a pack of four with screws included. 

You can reduce the spread of germs during your daily tasks easily just by fastening the openers to your door handles. Help do your part to minimize risky contact and make a positive change!

In order to make this solution available to as many as possible, Materialise are introducing additional designs, including openers that fit door handles of various shapes and sizes as well as options that are smaller and therefore more affordable to print. Materialise’s Design and Engineering team is continuing to work on more variations, so check back regularly to find more models.

elements of AI

credits: Reaktor

Recently I completed the free online course elements of AI provided by Reaktor and the University of Helsinki. This is a very interesting opportunity for those who would like to learn the basics of AI and machine learning. Combining theory with practical exercises, the course can be completed at the reader’s own pace. Strongly recommended!